Cooperative Robot Manipulator Control with Human ‘pinning’ for Robot Assistive Task Execution

  • Muhammad Nasiruddin Mahyuddin
  • Guido Herrmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8239)


This paper presents the use of a multi-agent controller in application to a human-robot cooperative task where the human is the lead and two robotic manipulators act as agents allowing for physical assistance of the human in a lifting task: the human aids in providing direction for two synchronized robot arms placing a tray with a water glass in a human-robot interaction experiment.

Novel adaptive multi-agent theory is exploited to achieve precise coordination between the arms, while being lead by the human. A novel finite-time adaptation scheme aids changing structures, such as the removal of the leading agent, so that consensus and synchronisation is retained. This is permitted by the decentralized control structure, where each agent is supported by an agent-specific controller and information exchanged between the agents is limited to position and velocity of each manipulator. Thus, the controller is robust to structural changes in the multi-agent network, e.g. the removal of the pinning agent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research 26(1), 23–39 (2007)CrossRefGoogle Scholar
  2. 2.
    Chen, Z., Lii, N.Y., Wimboeck, T., Fan, S., Jin, M., Borst, C.H., Liu, H.: Experimental study on impedance control for the five-finger dexterous robot hand dlr-hit ii. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5867–5874. IEEE (2010)Google Scholar
  3. 3.
    Braun, D.J., Petit, F., Huber, F., Haddadin, S., van der Smagt, P., Albu-Schaffer, A., Vijayakumar, S.: Optimal torque and stiffness control in compliantly actuated robots. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2801–2808 (2012)Google Scholar
  4. 4.
    Khan, S.G., Herrmann, G., Pipe, T., Melhuish, C., Spiers, A.: Safe adaptive compliance control of a humanoid robotic arm with anti-windup compensation and posture control. International Journal of Social Robotics 2(3), 305–319 (2010)CrossRefGoogle Scholar
  5. 5.
    Cheah, C.C., Wang, D.: Learning impedance control for robotic manipulators. IEEE Transactions on Robotics and Automation 14(3), 452–465 (1998)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Sam Ge, S., Yang, C.: Learning impedance control for physical robot–environment interaction. International Journal of Control 85(2), 182–193 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Demircan, E., Besier, T., Menon, S., Khatib, O.: Human motion reconstruction and synthesis of human skills. In: Advances in Robot Kinematics: Motion in Man and Machine, pp. 283–292. Springer (2010)Google Scholar
  8. 8.
    Spiers, A., Herrmann, G., Melhuish, C., Pipe, T., Lenz, A.: Robotic implementation of realistic reaching motion using a sliding mode/Operational space controller. In: Kim, J.-H., et al. (eds.) FIRA 2009. LNCS, vol. 5744, pp. 230–238. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Lacquaniti, F., Soechting, J.: Coordination of arm and wrist motion during a reaching task. The Journal of Neuroscience 2(4), 399–408 (1982)Google Scholar
  10. 10.
    Flash, T., Hogan, N.: The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience 5(7), 1688–1703 (1985)Google Scholar
  11. 11.
    Ge, S.S., Li, Y., He, H.: Neural-network-based human intention estimation for physical human-robot interaction. In: 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 390–395 (2011)Google Scholar
  12. 12.
    Koivo, A.: Adaptive position-velocity-force control of two manipulators. In: 1985 24th IEEE Conference on Decision and Control, vol. 4, pp. 1529–1532. IEEE (December 1985)Google Scholar
  13. 13.
    Hemami, A.: Kinematics of two-arm robots. IEEE Journal on Robotics and Automation 2(4), 225–228 (1986)CrossRefGoogle Scholar
  14. 14.
    Uchiyama, M., Dauchez, P.: Hybrid Position/Force control for coordination of a two-arm robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, North Carolina, U.S.A., Number c, pp. 1242–1247 (1987)Google Scholar
  15. 15.
    Tarn, T., Bejczy, A., Yun, X.: Design of dynamic control of two cooperating robot arms: Closed chain formulation. Institute of Electrical and Electronics Engineers (1987)Google Scholar
  16. 16.
    Zheng, Y., Luh, J.S.: Control of two coordinated robots in motion. In: 1985 24th IEEE Conference on Decision and Control, pp. 1761–1766. IEEE (December 1985)Google Scholar
  17. 17.
    Yoshikawa, T., Sugie, T., Tanaka, M.: Dynamic hybrid position/Force control of robot manipulators–Controller design and experiment. In: Proceedings of the 1987 IEEE International Conference on Robotics and Automation, pp. 2005–2010 (1987)Google Scholar
  18. 18.
    Jean, J.H., Fu, L.C.: An adaptive control scheme for coordinated multimanipulator systems. IEEE Transactions on Robotics and Automation 9(2), 226–231 (1993)CrossRefGoogle Scholar
  19. 19.
    Slotine, J.J.: Adaptive manipulator control: A case study. IEEE Transactions on Automatic Control 33(11), 995–1003 (1988)CrossRefMATHGoogle Scholar
  20. 20.
    Naniwa, T., Arimoto, S., Vega, V.P.: A model-based adaptive control scheme for coordinated control of multiple manipulators. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 1994), pp. 695–702. IEEE (1994)Google Scholar
  21. 21.
    Liu, Y.H., Arimoto, S., Parra-Vega, V., Kitagaki, K.: Decentralized adaptive control of multiple manipulators in co-operations. International Journal of Control 67(5), 649–674 (1997)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Cheng, L., Hou, Z.G., Tan, M.: Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics. In: 2008 IEEE International Conference on Systems, Man and Cybernetics, pp. 2712–2717 (October 2008)Google Scholar
  23. 23.
    Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Chen, G., Lewis, F.: Distributed adaptive controller design for the unknown networked lagrangian systems. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 6698–6703 (2008)Google Scholar
  25. 25.
    Das, A., Lewis, F.L.: Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities. International Journal of Robust and Nonlinear Control (2010)Google Scholar
  26. 26.
    Qu, Z.: Cooperative Control of Dynamical Systems. Springer, Heidelberg (2009)MATHGoogle Scholar
  27. 27.
    Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practice, 2nd edn. Marcel Dekker (2004)Google Scholar
  28. 28.
    Mahyuddin, M.N., Herrmann, G.: Distributed motion synchronisation control of humanoid arms. In: Omar, K., et al. (eds.) FIRA 2013. CCIS, vol. 376, pp. 21–35. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Mahyuddin, M.N., Herrmann, G., Khan, S.: A novel adaptive control algorithm in application to a humanoid robot arm. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C., Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) FIRA-TAROS 2012. LNCS, vol. 7429, pp. 25–36. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Muhammad Nasiruddin Mahyuddin
    • 1
  • Guido Herrmann
    • 1
  1. 1.Bristol Robotic Laboratory and Department of Mechanical EngineeringUniversity of BristolBristolUK

Personalised recommendations