Advertisement

Social Comparison between the Self and a Humanoid

Self-Evaluation Maintenance Model in HRI and Psychological Safety
  • Hiroko Kamide
  • Koji Kawabe
  • Satoshi Shigemi
  • Tatsuo Arai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8239)

Abstract

We investigate whether the SEM model (Self-evaluation maintenance model) can be applied in HRI in relation to psychological safety of a robot. The SEM model deals with social comparisons, and predicts the cognitive mechanism that works to enhance or maintain the relative goodness of the self. The results obtained from 139 participants show that the higher self-relevance of a task is related to a lower evaluation of the robot regardless of actual level of performance. Simultaneously, a higher evaluation of performance relates to higher safety. This study replicates the prediction of the SEM model. In this paper, we discuss the generality of these results.

Keywords

Social Comparison Self Humanoid Psychological Safety Selfevaluation Maintenance Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kanda, T., Miyashita, T., Osada, T., Haikawa, Y., Ishiguro, H.: Analysis of Humanoid Appearances in Human-robot Interaction. IEEE Trans. on Robotics 24, 725–735 (2008)CrossRefGoogle Scholar
  2. 2.
    Broadbent, E., MacDonald, B., Jago, L., Juergens, M., Mazharullah, O.: Human reactions to good and bad robots. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, pp. 3703–3708 (2007)Google Scholar
  3. 3.
    Muto, Y., Takasugi, S., Yamamoto, T., Miyake, Y.: Timing Control of Utterance and Gesture in Interaction between Human and Humanoid robot. In: Proc. of the IEEE International Symposium on Robot and Human Interactive Communication, Toyama, pp. 1022–1028 (2009)Google Scholar
  4. 4.
    Kanda, T., Ishiguro, H., Imai, M., Ono, T.: Development and Evaluation of Interactive Humanoid Robots. Proceedings of the IEEE (Special Issue on Human Interactive Robot for Psychological Enrichment) 92, 1839–1850 (2004)Google Scholar
  5. 5.
    James, W.: The Principles of Psychology. Holt, New York (1890)CrossRefGoogle Scholar
  6. 6.
    Festinger, L.: A Theory of Social Comparison Processes. Human Relations 7, 117–140 (1954)CrossRefGoogle Scholar
  7. 7.
    Thornton, D., Arrowood, A.J.: Self-evaluation, self-enhancement, and the locus of social comparison. Journal of Experimental Social Psychology 2 (suppl. 1), 40–48 (1966)Google Scholar
  8. 8.
    Tesser, A.: Toward a self-evaluation maintenance model of social behavior. Advances in Experimental Social Psychology 21, 181–227 (1988)CrossRefGoogle Scholar
  9. 9.
    Tesser, A., Millar, M., Moore, J.: Some affective consequences of social comparison and reflection processes: The pain and pleasure of being close. Journal of Personality and Social Psychology 54, 49–61 (1988)CrossRefGoogle Scholar
  10. 10.
    Tesser, A., Campbell, J.: Self-definition: The impact of the relative performance and similarity of others. Social Psychology Quarterly 43, 341–347 (1980)CrossRefGoogle Scholar
  11. 11.
    Pleban, R., Tesser, A.: The effects of relevance and quality of another’s performance on interpersonal closeness. Social Psychology Quarterly 44, 278–285 (1981)CrossRefGoogle Scholar
  12. 12.
    Tesser, A., Campbell, J.: Self-evaluation maintenance and the perception of friends and strangers. Journal of Personality 59, 261–279 (1982)CrossRefGoogle Scholar
  13. 13.
    Kamide, H., Daibo, I.: Application of a Self-Evaluation Maintenance Model to Psychological Health in Interpersonal Context. The Journal of Positive Psychology 4, 557–565 (2009)CrossRefGoogle Scholar
  14. 14.
    Kamide, H., Kawabe, K., Shigemi, S., Arai, T.: A Psychological Scale for General Impressions of Humanoids. In: Proc. of 2012 IEEE International Conference on Robotics and Automation, Saint Paul (2012)Google Scholar
  15. 15.
    Bartneck, C., Kulic, D., Croft, E., Zoghbi, S.: Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robots 1(1), 71–81 (2009)CrossRefGoogle Scholar
  16. 16.
    Kamide, H., Kawabe, K., Shigemi, S., Arai, T.: New Measurement of Psychological Safety for Humanoid. In: Proc. of the 7th ACM/IEEE International Conference on Human-Robot Interaction 2012, pp. 49–56 (2012)Google Scholar
  17. 17.
    Nater, U.M., Rohleder, N., Gaab, J., Berger, S., Jud, A., Kirschbaum, C., Ehlert, U.: Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. International Journal of Psychophysiology 55(3), 333–342 (2005)CrossRefGoogle Scholar
  18. 18.
    Richmond, V.P.: Nonverbal communication in the classroom, 2nd edn. Tapestry Press, Acton (1997)Google Scholar
  19. 19.
    Ambady, N., Rosenthal, R.: Half a minute: Predicting teacher evaluations from thin slices of nonverbal behavior and physical attractiveness. Journal of Personality and Social Psychology 64(3), 431–441 (1993)CrossRefGoogle Scholar
  20. 20.
    Hartley, J.: Note-taking: A critical review. Programmed Learning and Educational Technology 15, 207–224 (1978)Google Scholar
  21. 21.
    Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its control processes. In: Spence, K.W., Spence, J.T. (eds.) The Psychology of Learning and Motivation: Advances in Research and Theory, vol. 2, pp. 89–195. Academic Press, San Diego (1968)Google Scholar
  22. 22.
    Cunninham, E.G., Wang, W.C.: Using Amos Graphics to Enhance the Understanding and Communication of Multiple Regression. IASE/ISI Satellite Publications (2005), http://www.stat.auckland.ac.nz/~iase/publications/14/cunningham.pdf
  23. 23.
    Bentler, P.M.: Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology 31, 419–456 (1980)CrossRefGoogle Scholar
  24. 24.
    Joreskog, K.G., Sorbom, D.: Lisrel 7: A guide to the program and applications. SPSS, Chicago (1989)Google Scholar
  25. 25.
    Bentler, P.M.: Comparative fit indexes in structural models. Psychological Bulletin 107, 238–246 (1990)CrossRefGoogle Scholar
  26. 26.
    Joreskog, K.G., Sorbom, D.: Lisrel V: Analysis of linear structural relationships by the method of maximum likelihood. National Educational Resources, Chicago (1981)Google Scholar
  27. 27.
    Cuttance, P.: Issues and problems in the application of structural equation models. In: Cuttance, P., Ecob, R. (eds.) Structural Modeling by Example: Applications in Educational, Sociological, and Behavioral Research, pp. 241–279. Cambridge Univ. Press (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hiroko Kamide
    • 1
  • Koji Kawabe
    • 2
  • Satoshi Shigemi
    • 2
  • Tatsuo Arai
    • 1
  1. 1.Department of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Honda R&D Co., Ltd.WakoJapan

Personalised recommendations