Ferromagnetic Models for Cooperative Behavior: Revisiting Universality in Complex Phenomena

  • Elena Agliari
  • Adriano Barra
  • Andrea Galluzzi
  • Andrea Pizzoferrato
  • Daniele Tantari
Part of the Springer INdAM Series book series (SINDAMS, volume 6)


Ferromagnetic models are harmonic oscillators in statistical mechanics. Beyond their original scope in tackling phase transition and symmetry breaking in theoretical physics, they are nowadays experiencing a renewal applicative interest as they capture the main features of disparate complex phenomena, whose quantitative investigation in the past were forbidden due to data lacking. After a streamlined introduction to these models, suitably embedded on random graphs, aim of the present paper is to show their importance in a plethora of widespread research fields, so to highlight the unifying framework reached by using statistical mechanics as a tool for their investigation. Specifically we will deal with examples stemmed from sociology, chemistry, cybernetics (electronics) and biology (immunology).


Partition Function Statistical Mechanic Random Graph Operational Amplifier Ferromagnetic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Acebron, J.A. et al: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)CrossRefGoogle Scholar
  2. 2.
    Agliari, E., Barra, A.: A Hebbian approach to complex-network generation. Euro Phys. Lett. 94(1), 10002 (2011)CrossRefGoogle Scholar
  3. 3.
    Agliari, E., Barra, A., Guerra, F., Moauro, F.: A thermodynamical perspective of immune capabilities. J. Theor. Biol. 287, 48–63 (2011)CrossRefGoogle Scholar
  4. 4.
    Agliari, E., Barra, A., Burioni, R., Di Biasio, A., Uguzzoni, G.: Biochemical kinetics and cybernetics. Submitted to Scientific Reports, Nature Publishing Group (2013)Google Scholar
  5. 5.
    Agliari, E., Barra, A., Galluzzi, A., Guerra, F., Moauro, F.: Multitasking associative networks. Phys. Rev. Lett. 109(26), 268101 (2012)CrossRefGoogle Scholar
  6. 6.
    Agliari, E., Barra, A., Del Ferraro, G., Guerra, F., Tantari, D.: Anergy in self-directed B lymphocytes: A statistical mechanics perspective. Submitted to Scientific Reports. Nature (2013)Google Scholar
  7. 7.
    Ashcroft, N.W., Mermin, N.D.: Solid state physics. Dover Press, Baltimore (1976)Google Scholar
  8. 8.
    Barra, A.: The mean field Ising model trough interpolating techniques. J. Stat. Phys. 132(5), 787–809 (2008)CrossRefGoogle Scholar
  9. 9.
    Barra, A., Agliari, E.: Equilibrium statistical mechanics on correlated random graphs. JSTAT P02027 (2011)Google Scholar
  10. 10.
    Barra, A., Agliari, E.: A statistical mechanics approach to autopoietic immune networks. JSTAT P07004 (2010)Google Scholar
  11. 11.
    Barra, A., Contucci, P.: Toward a quantitative appproach to migrant’s integration, Eur. Phys. Lett. 89(6), 68001 (2010)CrossRefGoogle Scholar
  12. 12.
    Barra, A., Contucci, P., Sandell, R., Vernia, C.: Integration indicators in immigration phenomena: A statistical mechanics perspective. Submitted to Scientific Reports, Nature (2013)Google Scholar
  13. 13.
    Barra, A., Genovese, G., Guerra, F.: Equilibrium statistical mechanics of bipartite spin systems. J. Phys. A 44(24), 245002 (2011)CrossRefGoogle Scholar
  14. 14.
    Barra, A., Genovese, G., Guerra, F., Tantari, D.: How glassy are neural networks? JSTAT 07, 07009 (2012)Google Scholar
  15. 15.
    Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press, Canberra (2007)Google Scholar
  16. 16.
    Benson, S.W., Benson, S.W.: The foundations of chemical kinetics. McGraw-Hill, New York (1960)Google Scholar
  17. 17.
    Bollobas, B.: Random graphs. Cambridge University Press, London (2001)CrossRefGoogle Scholar
  18. 18.
    De Sanctis, L., Guerra, F.: Mean field dilute ferromagnet: high temperature and zero temperature behavior. J. Stat. Phys. 132(5), 759–785 (2008)CrossRefGoogle Scholar
  19. 19.
    Di Biasio, A. et al: Mean-field cooperativity in chemical kinetics. Theor. Chem. Accounts 131(3), 1–14 (2012)CrossRefGoogle Scholar
  20. 20.
    Durlauf, S.N.: How can statistical mechanics contribute to social science? Proc. Natl. Acad. Sc. USA 96(19), 10582–10584 (1999)Google Scholar
  21. 21.
    Ellis, R.S.: Entropy, large deviations, and statistical mechanics. Taylor and Francis, New York (2005)Google Scholar
  22. 22.
    Evans, D.J., Morriss, G.: Statistical mechanics of non-equilibrium liquids. Cambridge University Press, Cambridge (2008)Google Scholar
  23. 23.
    Gallo, I., Contucci, P.: Bipartite mean field spin systems. Existence and solution. Math. Phys. E. J. 14, 463 (2008)Google Scholar
  24. 24.
    Guerra, F.: An introduction to mean field spin glass theory: methods and results. Lectures at the Les Houches Winter School (2005)Google Scholar
  25. 25.
    Janaway, C.A. et al: Immunobiology. Garland Science Press, New York (2003)Google Scholar
  26. 26.
    Millman, J., Halkias, C.C.: Integrated electronics: Analog and digital circuits and systems. Allied Publishers, Philadephia (1972)Google Scholar
  27. 27.
    Onsager, L.: The Ising model in two dimensions. In: Critical Phenomena in Alloys, Magnets and Superconductors, pp. 3–12. McGraw-Hill, New York (1971)Google Scholar
  28. 28.
    Thompson, C.J.: Mathematical statistical mechanics. The MacMillan Company, Toronto (Ontario) (1976)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Elena Agliari
    • 1
  • Adriano Barra
    • 2
  • Andrea Galluzzi
    • 3
  • Andrea Pizzoferrato
    • 2
  • Daniele Tantari
    • 3
  1. 1.Dipartimento di FisicaUniversità di ParmaParmaItaly
  2. 2.Dipartimento di FisicaSapienza Università di RomaRomaItaly
  3. 3.Dipartimento di MatematicaSapienza Università di RomaRomaItaly

Personalised recommendations