Fiducial Theory for Free-Knot Splines

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 68)

Abstract

We construct the fiducial model for free-knot splines and derive sufficient conditions to show asymptotic consistency of a multivariate fiducial estimator. We show that splines of degree four and higher satisfy those conditions and conduct a simulation study to evaluate quality of the fiducial estimates compared to the competing Bayesian solution. The fiducial confidence intervals achieve the desired confidence level while tending to be shorter than the corresponding Bayesian credible interval using the reference prior. AMS 2000 subject classifications: Primary 62F99, 62G08; secondary 62P10.

Keywords

Free-knot splines Generalized fiducial inference Bernstein-von Mises theorem 

References

  1. Cisewski J, Cisewski J, Hannig J (2012) Generalized fiducial inference for normal linear mixed models Ann Stat 40:2102–2127CrossRefMATHMathSciNetGoogle Scholar
  2. DiMatteo I, Genovese C, Kass R, Robert E (2001) Bayesian curve-fitting with free-knot splines. Biometrika 88:1055–1071CrossRefMATHMathSciNetGoogle Scholar
  3. Lidong E, Hannig J, Iyer H (2008) Fiducial intervals for variance components in an un-balanced two-component normal mixed linear model. J Am Stat Assoc 103:854–865CrossRefMATHGoogle Scholar
  4. Fisher RA (1930) Inverse probability. Proc Camb Philos Soc xxvi:528–535CrossRefGoogle Scholar
  5. Ghosh JK, Ramamoorthi RV (2003). Bayesian Nonparametrics. Springer-Verlag, New YorkMATHGoogle Scholar
  6. Hannig J (2009) On generalized fiducial inference. Statist Sinica 19:491–544MATHMathSciNetGoogle Scholar
  7. Hannig J (2013) Generalized fiducial inference via discretization. Stat Sinica 23:489–514MATHMathSciNetGoogle Scholar
  8. Hannig J, Iyer H, Patterson P (2006) Fiducial generalized confidence intervals. J Am Stat Assoc 101:254–269. 10.1198/016214505000000736CrossRefMATHMathSciNetGoogle Scholar
  9. Hannig J, Lee TCM (2009). Generalized fiducial inference for wavelet regression. Biometrika 96:847–860. 10.1093/biomet/asp050CrossRefMATHMathSciNetGoogle Scholar
  10. Lehmann EL, George C, (1998) Theory of point estimation. Springer, New YorkMATHGoogle Scholar
  11. Muggeo VMR (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071CrossRefGoogle Scholar
  12. Muggeo VMR (2008) Segmented: an R package to fit regression models with broken-line relationships. R News, 8, 1: 20–25.Google Scholar
  13. Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  14. Sonderegger DL, Wang H, Clements WH, Noon BR (2009) Using SiZer to detect thresholds in ecological data. Front Ecol Environ 7:190–195 doi:10.1890/070179Google Scholar
  15. Toms JD, Lesperance ML (2003) Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034–2041CrossRefGoogle Scholar
  16. van der Varrt AW (1998) Asymptotic statistics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Wandler DV, Hannig J (2011) Generalized fiducial confidence intervals for extremes. Extremes 15:67–87. 10.1007/s10687-011-0127-9CrossRefMathSciNetGoogle Scholar
  18. Wandler DV, Hannig J (2012) A fiducial approach to multiple comparisons. J Stat Plan Infer 142:878–895. 10.1016/j.jspi.2011.10.011CrossRefMATHMathSciNetGoogle Scholar
  19. Weerahandi S (1993) Generalized confidence intervals. J Am Stat Assoc 88(423):899–905CrossRefMATHMathSciNetGoogle Scholar
  20. Yeo IK, Johnson RA (2001) A uniform strong law of large numbers for U-statistics with application to transforming to near symmetry. Stat Probab Lett 51 63–69CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsNorthern Arizona UniveristyFlagstaffUSA
  2. 2.Department of Statistics and Operations ResearchUniversity of North CarolinaNorth CarolinaUSA

Personalised recommendations