Simulation of City Evacuation Coupled to Flood Dynamics

  • A. S. Mordvintsev
  • V. V. Krzhizhanovskaya
  • M. H. Lees
  • P. M. A. Sloot
Conference paper


Crowd modeling is one of the key components of risk analysis and evacuation planning in emergency situations. This paper presents a simulation environment for experimenting with different city evacuation scenarios. The simulation couples a flood model with a crowd escape model. The developed agent-based crowd model mimics the behavior of pedestrians escaping from dangerous regions towards safe areas. The system is evaluated through a series of experiments, modeling the flooding of an area in St. Petersburg, Russia.


Crowd dynamics Evacuation Urban flood Agent based simulation Decision support 



This work is supported by the Leading Scientist Program of the Russian Federation, contracts 11.G34.31.0019 and 13.G25.31.0029; by the EU FP7 project UrbanFlood, grant N 248767; and by the BiGGrid project BG-020-10 # 2010/01550/NCF with financial support from the Netherlands Organisation for Scientific Research NWO.


  1. 1.
    K.S Pomeranets. Three centuries of floods in Petersburg (in Russian: Три века петербургских наводнений). St. Petersburg: Iskusstvo-SPB, 2005.Google Scholar
  2. 2.
    V.V. Krzhizhanovskaya et al. Flood early warning system: design, implementation and computational modules. Procedia Computer Science, V. 4, pp. 106–115, 2011.
  3. 3.
    A.L. Pyayt et al. Artificial Intelligence and Finite Element Modelling for Monitoring Flood Defence Structures. Proc. 2011 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems. Milan, Italy, September 2011, pp. 1–7
  4. 4.
    B. Pengel, G.S. Shirshov, V.V. Krzhizhanovskaya, N.B. Melnikova, A.R. Koelewijn, A.L. Pyayt, I.I. Mokhov. Flood Early Warning System: Sensors and Internet. IAHS Red Book series, 2012 (in print)Google Scholar
  5. 5.
    N.B. Melnikova, G.S. Shirshov, V.V. Krzhizhanovskaya. Virtual Dike: multiscale simulation of dike stability. Procedia Computer Science, V. 4, pp. 791–800, 2011.
  6. 6.
    N.B. Melnikova et al. Virtual Dike and Flood Simulator: Parallel distributed computing for flood early warning systems. Proc. Int’l Conference on Parallel Computational Technologies (PAVT-2011). Publ. Centre of the South Ural State University, Chelyabinsk, pp. 365–373.
  7. 7.
    A.L. Pyayt et al. Machine Learning Methods for Environmental Monitoring and Flood Protection. World Academy of Science, Engineering and Technology, Issue 78, pp. 118–124, June 2011.
  8. 8.
    B. Gouldby et al. Multiscale modelling in real-time flood forecasting systems: From sand grain to dike failure and inundation. Procedia Computer Science, V. 1, p. 809.
  9. 9.
    B. Gouldby et al. A methodology for regional-scale flood risk assessment. Proceedings of the Institution of Civil Engineers, 2008.Google Scholar
  10. 10.
    Dawson R.J., Peppe R. & Wang M.A. Agent-based model for risk-based flood incident management. Nat Hazards 2011, 59, 167–189.CrossRefGoogle Scholar
  11. 11.
    M. Di Mauro, K.M. de Bruijn. Application and validation of mortality functions to assess the consequences of flooding to people. Journal of Flood Risk Management. Volume 5, Issue 2, pages 92–110, June 2012.Google Scholar
  12. 12.
    M. Di Mauro and D. Lumbroso. Hydrodynamic and loss of life modelling for the 1953 Canvey Island flood, in the proceedings of the International Conference on FloodRisk, 30 September to 2 October 2008, Oxford, UKGoogle Scholar
  13. 13.
    Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Proceedings. 1985 IEEE International Conference on Robotics and Automation,1985.Google Scholar
  14. 14.
    Jur van den Berg, Stephen J. Guy, Ming C. Lin, and Dinesh Manocha, “Reciprocal n-body collision avoidance,” in CédricPradalier, Roland Siegwart, and Gerhard Hirzinger (eds.), Robotics Research: The 14th International Symposium ISRR, Springer Tracts in Advanced Robotics, vol. 70, Springer-Verlag, Berlin, Germany, May 7, 2011, pp. 3–19.Google Scholar
  15. 15.
    P. Felzenszwalb, D. Huttenlocher. Distance Transforms of Sampled Functions. Computing and Information Science Technical Reports, Cornell University, 2004.Google Scholar
  16. 16.
    D. Douglas, T. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, V. 10, N 2. (1 October 1973), pp. 112–122.Google Scholar
  17. 17.
    C. Reynolds. Steering Behaviors for Autonomous Characters. 1999.Google Scholar
  18. 18.
    Suiping Zhou, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Yoke-Hean Low, Feng Tian, Victor Su-Han Tay, Darren Wee Sze Ong, Benjamin D. Hamilton: Crowd modeling and simulation technologies. ACM Trans. Model. Comput. Simul. 20(4): 20 (2010).Google Scholar
  19. 19.
    G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.Google Scholar
  20. 20.
    C.W. Warren. Global path planning using artificial potential fields. IEEE International Conference on Robotics and Automation, 1989.Google Scholar
  21. 21.
    S. LaValle. Planning Algorithms (First ed.), Cambridge University Press, 2006.Google Scholar
  22. 22.
    C. I. Connolly, J. B. Burns, R. Weiss. Path Planning Using Laplace’s Equation. In Proceedings of the IEEE International Conference on Robotics and Automation, 1990.Google Scholar
  23. 23.
    L. C. Polymenakos, D. P. Bertsekas, J. N. Tsitsiklis. Implementation of efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control In Automatic Control, Vol. 43, No. 2., pp. 278–283, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Won-ki Jeong, Ross, T. Whitaker. A fast eikonal equation solver for parallel systems. In SIAM conference on Computational Science and Engineering, 2007.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. S. Mordvintsev
    • 1
  • V. V. Krzhizhanovskaya
    • 1
    • 2
  • M. H. Lees
    • 3
  • P. M. A. Sloot
    • 1
    • 2
    • 3
  1. 1.National Research University ITMOSt. PetersburgRussia
  2. 2.University of AmsterdamAmsterdamNetherlands
  3. 3.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations