Fundamental Diagram of Stairs: Critical Review and Topographical Measurements

  • Sebastian BurghardtEmail author
  • Armin Seyfried
  • Wolfram Klingsch
Conference paper


In this contribution an overview about the fundamental diagram for stairs is given. First we discuss discrepancies of fundamental diagrams of well-known planning handbooks for pedestrian facilities and evacuation routes like Predtechenskii and Milinskii (Planning for foot traffic flow in buildings. Amerind Publishing, New Delhi, 1978. Translation of: Proekttirovanie Zhdanii s Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov, Stroiizdat Publishers, Moscow, 1969), Nelson HE, Mowrer FW (Emergency movement. In: PJ DiNenno (ed) SFPE handbook of fire protection engineering, 3rd edn., Chap 14. National Fire Protection Association, Quincy, pp 367–380, 2002), Fruin Fruin (Pedestrian planning and design. Elevator World, New York, 1971), and Weidmann (Transporttechnik der Fussgänger. Institut für Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau, ETH Zürich, Tech. Rep. Schriftenreihe des IVT Nr. 90, 1993, zweite, ergänzte Auflage). To proof the correspondence to real measurements, we present published measurements available in literature.In the second part we derive a fundamental diagram for stairs downwards based on precise trajectories. To check whether our experiments performed under laboratory conditions are comparable with characteristics of motion of every day situations, we present a comparison with a field study carried out at the same staircase. Furthermore the contribution shows a method to gain topographical information of density, velocity, and specific flow structures to get a microscopic insight into pedestrian dynamics on stairs. This information could be used to identify effective bottlenecks.


Pedestrian dynamics Fundamental diagram Topographical measurements 



This work has been performed within the program Research for Civil Security in the field Protecting and Saving Human Life funded by the German Government, Federal Ministry of Education and Research (BMBF).


  1. 1.
    V. M. Predtechenskii and A. I. Milinskii, Planning for Foot Traffic Flow in Buildings. Amerind Publishing, New Dehli, 1978, translation of: Proekttirovanie Zhdanii s Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov, Stroiizdat Publishers, Moscow, 1969.Google Scholar
  2. 2.
    H. E. Nelson and F. W. Mowrer, “Emergency Movement,” in SFPE Handbook of Fire Protection Engineering, 3rd ed., P. J. DiNenno, Ed. Quincy MA: National Fire Protection Association, 2002, ch. 14, pp. 367–380.Google Scholar
  3. 3.
    J. J. Fruin, Pedestrian Planning and Design. Elevator World, New York, 1971.Google Scholar
  4. 4.
    U. Weidmann, “Transporttechnik der Fussgänger,” Institut für Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau, ETH Zürich, Tech. Rep. Schriftenreihe des IVT Nr. 90, 1993, zweite, ergänzte Auflage.Google Scholar
  5. 5.
    P. J. DiNenno, SFPE Handbook of Fire Protection Engineering, 3rd ed. Quincy MA: National Fire Protection Association, 2002.Google Scholar
  6. 6.
    S. Burghardt, A. Seyfried, and W. Klingsch, “Improving Egress Design through Measurement and Correct Interpretation of the Fundamental Diagram for Stairs,” in Developments in Road Transportation, M. Panda and U. Chattaraj, Eds., Proceedings of the International Conference on Developments in Road Transportation, October 8–12, 2010, NIT Rourkela, Odisha, India. Macmillian Publishes India Ltd, 2010, pp. 181–187.Google Scholar
  7. 7.
    X. Chen, J. Ye, and N. Jian, “Relationships and characteristics of pedestrian traffic flow in confined passageways,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2198, pp. 32–40, 2010, dOI: 10.3141/2198-05.Google Scholar
  8. 8.
    H. Frantzich, “A model for performance-based design of escape routes,” Department of Fire Safety Engineering, Lund Institute of Technology, Tech. Rep. 1011, 1994.Google Scholar
  9. 9.
    Frantzich, H., “Study of movement on stairs during evacuation using video analysing techniques,” Department of Fire Safety Engineering, Lund Institute of Technology, Tech. Rep., 1996.Google Scholar
  10. 10.
    E. Graat, C. Midden, and P. Bockholts, “Complex evacuation; effects of motivation level and slope of stairs on emergency egress time in sports stadium,” Safety Science, vol. 31, pp. 127–141, 1999.CrossRefGoogle Scholar
  11. 11.
    B. D. Hankin and R. A. Wright, “Passenger Flow in Subways,” Operational Research Quarterly, vol. 9, pp. 81–88, 1958.CrossRefGoogle Scholar
  12. 12.
    K. Hoskin, “Fire Protection and Evacuation Procedures of Stadia Venues in New Zealand,” Masterthesis, University of Canterbury, Department of Civil Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand, apr 2004.Google Scholar
  13. 13.
    T. Kretz, A. Grünebohm, A. Kessel, H. Klüpfel, T. Meyer-König, and M. Schreckenberg, “Upstairs walking speed distributions on a long stairway,” Safety Science, vol. 46, no. 1, pp. 72–78, jan 2008.Google Scholar
  14. 14.
    W. H. K. Lam and C.-y. Cheung, “Pedestrian Speed/Flow Relationships for Walking Facilities in Hong Kong,” Journal of Transportation Engineering, vol. 126, pp. 343–349, 2000.Google Scholar
  15. 15.
    M. Müller, “Fundamentaldiagramme von Personenströmen auf Tribünentreppen – Vergleich unterschiedlicher Steigungen am Beispiel der ESPRIT arena; Fundamental diagram of stairs in grandstands – Comparison of different slopes using the ESPRIT arena as example,” Bachelor Thesis, Bergische Universität Wuppertal, 2010.Google Scholar
  16. 16.
    I. Sadatoshi and K. Koichiro, Eds., Observation of the Crowd Flow in a Building, March 1937.Google Scholar
  17. 17.
    D. B. N. Seer, S. Bauer and M. Ray, “Estimating Pedestrian Movement Characteristics for Crowd Control at Public Transport Facilities,” in 11th International IEEE Conference on Intelligent Transport Systems, oct 2008.Google Scholar
  18. 18.
    Y. Tanaboriboon, S. S. Hwa, and C. H. Chor, “Pedestrian Characteristics Study in Singapore,” Journal of Transportation Engineering, vol. 112, pp. 229–235, 1986.CrossRefGoogle Scholar
  19. 19.
    J. A. Templer, The Staircase: Studies of Hazards, Falls, and Safer Design, M. I. of Technology, Ed. The MIT Press, 1992.Google Scholar
  20. 20.
    J. Ye, X. Chen, C. Yang, and J. Wu, “Walking behavior and pedestrian flow characteristics for different types of walking facilities,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2048, pp. 43–51, 2008, dOI: 10.3141/2048-06.Google Scholar
  21. 21.
    J. Pauls, “Are functional handrails within our grasp?” Building Standards, vol. 60, pp. 6–12, 1991.Google Scholar
  22. 22.
    J. Pauls, A. J. Gatfield, and E. Juillet, “Elevator use for egress: the human-factors problems and prospects,” Elevator World, pp. 63–75, 1992, paper for Symposium on Elevators and Fire to be held February 19–20, 1991, in Baltimore, Maryland.Google Scholar
  23. 23.
    J. Pauls, “Vertical Evacuation in Large Buildings: Missed opportunities for research,” Disaster Management, vol. 6, no. 3, pp. 128–132, 1994.Google Scholar
  24. 24.
    Pauls, J., “Have We Learned the Evacuation Lessons? A Commentary,” Fire Engineering, vol. 155, no. 10, pp. 113–122, oct 2002.Google Scholar
  25. 25.
    J. Pauls, “Photographic representation of visual fields just before missteps and falls involving stairs,” in Contemporary Ergonomics 2005, P. D. Bust and P. T. Mc Cabe, Eds. Taylor and Francis Books, 2005, pp. 419–423, international Symposium on Slips, Trips and Falls, held as part of the Ergonomics Society 2005 Annual Conference, Hatfield, UK.Google Scholar
  26. 26.
    Pauls, J., “Elevators and Stairs for Evacuation: Comparisons and Combinations,” Elevator World, vol. LIII, no. 1, pp. 69–74, jan 2005, proceedings of Workshop on Use of Elevators in Fires and Other Emergencies, American Society of Mechanical Engineers, 2004.Google Scholar
  27. 27.
    “Hermes – investigation of an evacuation assistant for use in emergencies during large-scale public events,”, March 2011.
  28. 28.
    S. Holl and A. Seyfried, “Hermes – an Evacuation Assistant for Mass Events,” inSiDe, vol. 7, no. 1, pp. 60–61, 2009. [Online]. Available:
  29. 29.
    M. Boltes, A. Seyfried, B. Steffen, and A. Schadschneider, “Automatic Extraction of Pedestrian Trajectories from Video Recordings,” in Pedestrian and Evacuation Dynamics 2008, W. W. F. Klingsch, C. Rogsch, A. Schadschneider, and M. Schreckenberg, Eds. Springer-Verlag Berlin Heidelberg, 2010, pp. 43–54.Google Scholar
  30. 30.
    A. Seyfried and A. Schadschneider, “Empirical Results for Pedestrian Dynamics at Bottlenecks,” in PPAM 2009, Part II, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, Eds. Springer-Verlag Berlin Heidelberg, 2010, pp. 575–584.Google Scholar
  31. 31.
    J. Zhang, W. Klingsch, A. Schadschneider, and A. Seyfried, “Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions,” Journal of Statistical Mechanics: Theory and Experiment, 2011, arXiv:1102.4766. [Online]. Available:
  32. 32.
    B. Steffen and A. Seyfried, “Methods for measuring pedestrian density, flow, speed and direction with minimal scatter,” Physica A, vol. 389, no. 9, pp. 1902–1910, may 2010.Google Scholar
  33. 33.
    G. M. Voronoi, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques,” Journal für die reine und angewandte Mathematik, vol. 133, pp. 198–287, 1908.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sebastian Burghardt
    • 1
    Email author
  • Armin Seyfried
    • 1
    • 2
  • Wolfram Klingsch
    • 3
  1. 1.Computer Simulation for Fire Safety and Pedestrian TrafficBergische Universitaet WuppertalWuppertalGermany
  2. 2.Juelich Supercomputing CentreForschungszentrum Juelich GmbHJuelichGermany
  3. 3.Fire Safety ScienceBergische Universitaet WuppertalWuppertalGermany

Personalised recommendations