Effective Translation of LTL to Deterministic Rabin Automata: Beyond the (F,G)-Fragment

  • Tomáš Babiak
  • František Blahoudek
  • Mojmír Křetínský
  • Jan Strejček
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8172)

Abstract

Some applications of linear temporal logic (LTL) require to translate formulae of the logic to deterministic ω-automata. There are currently two translators producing deterministic automata: ltl2dstar working for the whole LTL and Rabinizer applicable to LTL(F,G) which is the LTL fragment using only modalities F and G. We present a new translation to deterministic Rabin automata via alternating automata and deterministic transition-based generalized Rabin automata. Our translation applies to a fragment that is strictly larger than LTL(F,G). Experimental results show that our algorithm can produce significantly smaller automata compared to Rabinizer and ltl2dstar, especially for more complex LTL formulae.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Torre, S.L.: Deterministic generators and games for LTL fragments. ACM Trans. Comput. Log. 5(1), 1–25 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Babiak, T., Badie, T., Duret-Lutz, A., Křetínský, M., Strejček, J.: Compositional approach to suspension and other improvements to LTL translation. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 81–98. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Babiak, T., Blahoudek, F., Kretínský, M., Strejcek, J.: Effective translation of LTL to deterministic rabin automata: Beyond the (F,G)-fragment. CoRR, abs/1306.4636 (2013)Google Scholar
  4. 4.
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)Google Scholar
  6. 6.
    Chatterjee, K., Gaiser, A., Křetínský, J.: Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)Google Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)Google Scholar
  9. 9.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Duret-Lutz, A.: LTL translation improvements in Spot. In: VECoS 2011. Electronic Workshops in Computing. British Computer Society (2011)Google Scholar
  13. 13.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE 1999, pp. 411–420. IEEE (1999)Google Scholar
  14. 14.
    Gaiser, A., Křetínský, J., Esparza, J.: Rabinizer: Small deterministic automata for LTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 72–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Klein, J.: ltl2dstar – LTL to deterministic Streett and Rabin automata, http://www.ltl2dstar.de
  17. 17.
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic ω-automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Křetínský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Morgenstern, A., Schneider, K.: From LTL to symbolically represented deterministic automata. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 279–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. Logical Methods in Computer Science 3(3) (2007)Google Scholar
  24. 24.
    Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE (1977)Google Scholar
  26. 26.
    Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  27. 27.
    Safra, S.: On the complexity of omega-automata. In: FOCS 1988, pp. 319–327. IEEE Computer Society (1988)Google Scholar
  28. 28.
    Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  30. 30.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: FOCS 1985, pp. 327–338. IEEE Computer Society (1985)Google Scholar
  31. 31.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS 1986, pp. 332–344. IEEE Computer Society (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Tomáš Babiak
    • 1
  • František Blahoudek
    • 1
  • Mojmír Křetínský
    • 1
  • Jan Strejček
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations