Advertisement

Integrating Policy Iterations in Abstract Interpreters

  • Pierre Roux
  • Pierre-Loïc Garoche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8172)

Abstract

Among precise abstract interpretation methods developed during the last decade, policy iterations is one of the most promising. Despite its efficiency, it has not yet seen a broad usage in static analyzers. We believe the main explanation to this restrictive use, beside the novelty of the technique, lies in its lack of integration in the classic abstract domain framework. This prevents an easy integration in existing static analyzers and collaboration with other, already implemented, abstract domains through reduced product. This paper aims at providing a classic abstract domain interface to policy iterations.

Usage of semidefinite programming to infer quadratic invariants on linear systems is one of the most appealing use of policy iteration. Combination with a template generation heuristic, inspired from existing methods from control theory, gives a fully automatic abstract domain to infer quadratic invariants on linear systems with guards. Those systems often constitute the core of embedded control systems and are hard, when not impossible, to analyze with linear abstract domains. The method has been implemented and applied to some benchmark systems, giving good results.

Keywords

abstract interpretation policy iteration linear systems with guards quadratic invariants ellipsoids semidefinite programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite relaxation to compute accurate numerical invariants in static analysis. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 23–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Borchers, B.: Csdp, a c library for semidefinite programming. Optimization Methods and Software 11(1-4) (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bouissou, O., Seladji, Y., Chapoutot, A.: Acceleration of the abstract fixpoint computation in numerical program analysis. J. Symb. Comput. 47(12) (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin, I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. 5.
    Boyd, S., El Ghaoui, L., Féron, É., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory, vol. 15. SIAM, Philadelphia (1994)CrossRefGoogle Scholar
  6. 6.
    Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration algorithm for computing fixed points in static analysis of programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Cousot, P.: Proving program invariance and termination by parametric abstraction, lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL (1977)Google Scholar
  9. 9.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does astrée scale up? Formal Methods in System Design 35(3), 229–264 (2009)CrossRefGoogle Scholar
  10. 10.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Combination of abstractions in the Astrée static analyzer. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Feautrier, P., Gonnord, L.: Accelerated invariant generation for c programs with aspic and c2fsm. Electr. Notes Theor. Comput. Sci. 267(2) (2010)CrossRefGoogle Scholar
  12. 12.
    Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 33–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Feret, J.: Numerical abstract domains for digital filters. In: International Workshop on Numerical and Symbolic Abstract Domains, NSAD (2005)Google Scholar
  14. 14.
    Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration on relational domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 237–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iteration. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Gawlitza, T.M., Monniaux, D.: Improving strategies via SMT solving. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 236–255. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Gawlitza, T.M., Seidl, H.: Computing relaxed abstract semantics w.r.t. Quadratic zones precisely. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 271–286. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Gawlitza, T.M., Seidl, H., Adjé, A., Gaubert, S., Goubault, E.: Abstract interpretation meets convex optimization. J. Symb. Comput. 47(12) (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain taylor1+. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Halbwachs, N., Henry, J.: When the decreasing sequence fails. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 198–213. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Jeannet, B.: Some experience on the software engineering of abstract interpretation tools. Electr. Notes Theor. Comput. Sci. (2) (2010)Google Scholar
  24. 24.
    Miné, A.: The octagon abstract domain. In: AST 2001 in WCRE 2001. IEEE (October 2001)Google Scholar
  25. 25.
    Monniaux, D.: Compositional analysis of floating-point linear numerical filters. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 199–212. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Roux, P., Jobredeaux, R., Garoche, P.-L., Féron, É.: A generic ellipsoid abstract domain for linear time invariant systems. In: HSCC. ACM (2012)Google Scholar
  27. 27.
    Rump, S.M.: Verification of positive definiteness. BIT Numerical Mathematics 46 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Schrammel, P., Jeannet, B.: Logico-numerical abstract acceleration and application to the verification of data-flow programs. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 233–248. Springer, Heidelberg (2011)Google Scholar
  29. 29.
    Seladji, Y., Bouissou, O.: Numerical abstract domain using support functions. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 155–169. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Sotin, P., Jeannet, B., Védrine, F., Goubault, E.: Policy iteration within logico-numerical abstract domains. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 290–305. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Pierre Roux
    • 1
    • 2
  • Pierre-Loïc Garoche
    • 1
  1. 1.ONERA – The French Aerospace LabToulouseFrance
  2. 2.ISAEUniversity of ToulouseToulouseFrance

Personalised recommendations