Advertisement

Looking at Mean-Payoff and Total-Payoff through Windows

  • Krishnendu Chatterjee
  • Laurent Doyen
  • Mickael Randour
  • Jean-François Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8172)

Abstract

We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff objectives, two classical quantitative objectives. While for single-dimensional games the complexity and memory bounds for both objectives coincide, we show that in contrast to multi-dimensional mean-payoff games that are known to be coNP-complete, multi-dimensional total-payoff games are undecidable. We introduce conservative approximations of these objectives, where the payoff is considered over a local finite window sliding along a play, instead of the whole play. For single dimension, we show that (i) if the window size is polynomial, deciding the winner takes polynomial time, and (ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at least as hard as solving mean-payoff games. For multiple dimensions, we show that (i) the problem with fixed window size is EXPTIME-complete, and (ii) there is no primitive-recursive algorithm to decide the existence of a bounded window.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms for mean-payoff games. Formal Methods in System Design 38(2), 97–118 (2011)CrossRefGoogle Scholar
  2. 2.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: Proc. of FSTTCS. LIPIcs, vol. 8, pp. 505–516. Schloss Dagstuhl - LZI (2010)Google Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Randour, M., Raskin, J.F.: Looking at mean-payoff and total-payoff through windows. CoRR, abs/1302.4248 (2013), http://arxiv.org/abs/1302.4248
  6. 6.
    Chatterjee, K., Henzinger, M.: An \(\mathcal{O}(n^{2})\) time algorithm for alternating büchi games. In: Proc. of SODA, pp. 1386–1399. SIAM (2012)Google Scholar
  7. 7.
    Chatterjee, K., Randour, M., Raskin, J.-F.: Strategy synthesis for multi-dimensional quantitative objectives. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 115–131. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. Journal of Game Theory 8(2), 109–113 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fijalkow, N., Horn, F.: The surprizing complexity of generalized reachability games. CoRR, abs/1010.2420 (2010)Google Scholar
  11. 11.
    Gawlitza, T.M., Seidl, H.: Games through nested fixpoints. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 291–305. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Gimbert, H., Zielonka, W.: When can you play positionally? In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 686–697. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Gurvich, V.A., Karzanov, A.V., Khachivan, L.G.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSR Computational Mathematics and Mathematical Physics 28(5), 85–91 (1988)CrossRefGoogle Scholar
  14. 14.
    Bjorklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games. Discrete Applied Mathematics 155, 210–229 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett. 68(3), 119–124 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jurdziński, M., Sproston, J., Laroussinie, F.: Model checking probabilistic timed automata with one or two clocks. Logical Methods in Computer Science 4(3) (2008)Google Scholar
  17. 17.
    Karzanov, A.V., Lebedev, V.N.: Cyclical games with prohibitions. Math. Program. 60, 277–293 (1993)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lifshits, Y.M., Pavlov, D.S.: Potential theory for mean payoff games. Journal of Mathematical Sciences 145(3), 4967–4974 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pisaruk, N.N.: Mean cost cyclical games. Mathematics of Operations Research 24(4), 817–828 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. Inf. Process. Lett. 83(5), 251–261 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Velner, Y., Rabinovich, A.: Church synthesis problem for noisy input. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 275–289. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Laurent Doyen
    • 2
  • Mickael Randour
    • 3
  • Jean-François Raskin
    • 4
  1. 1.IST Austria (Institute of Science and Technology Austria)Austria
  2. 2.LSV - ENS CachanFrance
  3. 3.Computer Science DepartmentUniversité de Mons (UMONS)Belgium
  4. 4.Département d’InformatiqueUniversité Libre de Bruxelles (U.L.B.)Belgium

Personalised recommendations