Using Mutual Influence to Improve Recommendations

  • Aline Bessa
  • Adriano Veloso
  • Nivio Ziviani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8214)


In this work we show how items in recommender systems mutually influence each other’s utility and how it can be explored to improve recommendations. The way we model mutual influence is cheap and can be computed without requiring any source of content information about either items or users. We propose an algorithm that considers mutual influence to generate recommendations and analyse it over different recommendation datasets. We compare our algorithm with the Top − N selection algorithm and obtain gains up to 17% in the utility of recommendations without affecting their diversity. We also analyse the scalability of our algorithm and show that it is as applicable for real-world recommender systems as Top − N.


Recommender systems theory of choice mutual influence collaborative filtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Toffler, A.: Future Shock. Random House (1970)Google Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Towards the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. 3.
    Tversky, A.: Elimination by aspects: A theory of choice. Psychological Review 79(4), 281–299 (1972)CrossRefGoogle Scholar
  4. 4.
    Passos, A., Gael, J.V., Herbrich, R., Paquet, U.: A penny for your thoughts? the value of information in recommendation systems. In: NIPS Workshop on Bayesian Optimization, Experimental Design, and Bandits, pp. 9–14 (2011)Google Scholar
  5. 5.
    Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. In: RecSys., pp. 109–116 (2011)Google Scholar
  6. 6.
    Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: RecSys., pp. 39–46 (2010)Google Scholar
  7. 7.
    Wang, J.: Mean-variance analysis: A new document ranking theory in information retrieval. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 4–16. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer (2011)Google Scholar
  9. 9.
    Xiong, C., Wang, T., Ding, W., Shen, Y., Liu, T.Y.: Relational click prediction for sponsored search. In: WSDM, pp. 493–502 (2012)Google Scholar
  10. 10.
    Weston, J., Blitzer, J.: Latent structured ranking. In: UAI, pp. 903–913 (2012)Google Scholar
  11. 11.
    Papagelis, M., Plexousakis, D.: Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Engineering Applications of Artificial Intelligence 18(7), 781–789 (2005)CrossRefGoogle Scholar
  12. 12.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: SIGKDD, pp. 426–434 (2008)Google Scholar
  13. 13.
    Nemhauser, G., Wolsey, L.: Integer and combinatorial optimization. Wiley (1988)Google Scholar
  14. 14.
    Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI, pp. 43–52 (1998)Google Scholar
  15. 15.
    McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: SIGCHI, pp. 1097–1101 (2006)Google Scholar
  16. 16.
    Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommendation lists. In: RecSys., pp. 123–130 (2008)Google Scholar
  17. 17.
    Bell, R., Koren, Y.: Lessons from the netflix prize challenge. ACM SIGKDD Explorations Newsletter 9(2) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aline Bessa
    • 1
  • Adriano Veloso
    • 1
  • Nivio Ziviani
    • 1
  1. 1.Department of Computer ScienceUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations