Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text

  • Tomohiro I
  • Yuto Nakashima
  • Shunsuke Inenaga
  • Hideo Bannai
  • Masayuki Takeda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8214)


We present two efficient algorithms which, given a compressed representation of a string w of length N, compute the Lyndon factorization of w. Given a straight line program (SLP) \(\mathcal{S}\) of size n and height h that describes w, the first algorithm runs in O(nh(n + logN logn)) time and O(n 2) space. Given the Lempel-Ziv 78 encoding of size s for w, the second algorithm runs in O(s logs) time and space.


Binary Search Derivation Tree Factorization Algorithm String Comparison Straight Line Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applications. Mathematical Systems Theory 28(2), 89–108 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor. Comput. Sci. 321(1), 5–12 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel = digitally convex. Pattern Recognition 42(10), 2239–2246 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. iv. the quotient groups of the lower central series. Annals of Mathematics 68(1), 81–95 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Parallel RAM algorithms for factorizing words. Theor. Comput. Sci. 127(1), 53–67 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gil, J.Y., Scott, D.A.: A bijective string sorting transform. CoRR abs/1201.3077 (2012)Google Scholar
  8. 8.
    I, T., Matsubara, W., Shimohira, K., Inenaga, S., Bannai, H., Takeda, M., Narisawa, K., Shinohara, A.: Detecting regularities on grammar-compressed strings. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 571–582. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Efficient lyndon factorization of grammar compressed text. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 153–164. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc. PSC 2009, pp. 65–79 (2009)Google Scholar
  11. 11.
    Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E86-A(5), 1061–1066 (2003)Google Scholar
  12. 12.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tomohiro I
    • 1
    • 2
  • Yuto Nakashima
    • 1
  • Shunsuke Inenaga
    • 1
  • Hideo Bannai
    • 1
  • Masayuki Takeda
    • 1
  1. 1.Department of InformaticsKyushu UniversityJapan
  2. 2.Japan Society for the Promotion of Science (JSPS)Japan

Personalised recommendations