Connectivity in Mathematics Education: Drawing Some Lessons from the Current Experiences and Questioning the Future of the Concept

  • Luc Trouche
Part of the Mathematics Education Library book series (MELI, volume 110)


The concept of connectivity, following the development of Internet resources, is more and more widely used, in the society in general, and in the mathematics education community in particular. This chapter aims to question the different meanings, and the potential, of this emergent concept. For this purpose, it lies first on the experience of the author, considering both connecting students as a support of their mathematics learning, and connecting teachers as a support of their professional development. Then it considers the views expressed in the connectivity panel occurring in the 17th ICMI study, dedicated to technology in mathematics education. Finally, it discusses the dynamics of the concept itself for the future of mathematics education.


Mathematics Education Mathematical Activity Social Connectivity Dynamic Geometry Software Overhead Projector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aldon, G. (2015). MOOC, Formations à distance, formations hybrides. MathemaTICE 46. Retrieved from
  2. Bellemain, F. (2014). Analyse d’environnements de géométrie dynamique collaborative du point de vue de l’orchestration instrumentale. Nuances: estudos sobre Educação, 2, 18–38. Retrieved from
  3. Betancourt, Y. (2014). Uso de recursos didácticos digitales en un primer curso de álgebra lineal, PhD, CINVESTAV, Mexico.Google Scholar
  4. Bozkurt, A., Akgun-Ozbek, E., Onrat-Yilmazer, S., Erdogdu, E., Ucar, H., Guler, E., et al. (2015). Trends in distance education research: A content analysis of journals 2009–2013. International Review of Research in Open and Distributed Learning, 16(1), 330–363.Google Scholar
  5. Cisel, M., & Bruillard, E. (2012). Chronique des MOOC. Sciences et Technologies de l’Information et de la Communication pour l´Éducation et la Formation, (19). Retrieved from
  6. Dillenbourg, P., Fox, A., Kirchner, C., Mitchell, J., & Wirsing, M. (2014). Massive open online courses: current state and perspectives. Dagstuhl Manifestos 4(1)1, 1–27. Retrieved from
  7. Fox, A. (2013). From MOOC to SPOC? Communications of the ACM, 56(12), 38–40.CrossRefGoogle Scholar
  8. Gueudet, G. (coord.) (2015). MOOC eFAN Maths. Edition 2014. Bilans. Internal report. ENS de Cachan & ENS de Lyon.Google Scholar
  9. Gueudet, G., & Trouche, L. (2011). Mathematics teacher education advanced methods: an example in dynamic geometry, ZDM, The International Journal on Mathematics Education, 43(3), 399–411. doi: 10.1007/s11858-011-0313-x. Retrieved from Google Scholar
  10. Gueudet, G., & Trouche, L. (2012). Communities, documents and professional geneses: interrelated stories. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 305–322). New York: Springer.CrossRefGoogle Scholar
  11. Guin, D., Joab, M., & Trouche, L. (2006). Conception collaborative de ressources, l’expérience du SFoDEM (2000–2006). IREM, Université Montpellier 2. Retrieved from
  12. Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical Instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.CrossRefGoogle Scholar
  13. Guin, D., & Trouche, L. (2005). Distance training, a key mode to support teachers in the integration of ICT? In M. Bosch (Ed.), Proceedings of the Fourth European Conference on Research on Mathematics Education (pp. 1020–1029), FUNDEMI IQS—Universitat Ramon Llull. Retrieved from
  14. Healy, L. (2002). Iterative design and comparison of learning systems for reflection in two dimensions, Unpublished Ph.D. thesis, University of London.Google Scholar
  15. Helsper, E., & Eynon, R. (2010). Digital natives: where is the evidence? British Educational Research Journal, 36(3), 503–520.CrossRefGoogle Scholar
  16. Hoyles, C., Kalas, I., Trouche, L., Hivon, L., Noss, R., & Wilensky, U. (2010). Connectivity and virtual networks for learning. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematical education and digital technologies: Rethinking the terrain (pp. 439–462). New York: Springer.CrossRefGoogle Scholar
  17. Hoyles, C., & Lagrange, J. B. (2010). Mathematical education and digital technologies: Rethinking the terrain. The 17th ICMI study. New York: Springer.Google Scholar
  18. Hoyles, C., Noss, R., & Kent, P. (2004). On the integration of digital technologies into mathematics classrooms. International Journal of Computers for Mathematical Learning, 9, 309–326.CrossRefGoogle Scholar
  19. Moreno-Armella, L., Hegedus, S., & Kaput, J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68(2), 99–111.CrossRefGoogle Scholar
  20. Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings. Learning cultures and computers. Dordercht, The Netherlands: Kluwer.CrossRefGoogle Scholar
  21. O’Reilly, T. (2005, September 30). What Is Web 2.0. design patterns and business models for the next generation of software. Web 2.0 Conference 2005. Retrieved June 2015, from
  22. Pepin, B., Gueudet, G., Yerushalmy, M., Trouche, L., & Chazan, D. (2015), E-textbooks in/for teaching and learning mathematics: A potentially transformative educational technology. In L. English, & D. Kirschner, Third Handbook of Research in Mathematics Education (pp. 636–661). New York: Taylor & FrancisGoogle Scholar
  23. Prediger, S., Arzarello, F., Bosch, M., & Lenfant, A. (Eds.) (2008). Comparing, combining, coordinating—networking strategies for connecting theoretical approaches. ZDM, The International Journal on Mathematics Education, 40(2), 163–327.Google Scholar
  24. Proust, C. (2014). Textes mathématiques cunéiformes: des listes pour apprendre, résoudre, classer, archiver, explorer ou inventer. Retrieved from
  25. Salaün, J.-M. (2012). Vu, lu, su. Les architectes de l’information face à l’oligopole du Web. Paris, France: La Découverte.Google Scholar
  26. Sfard, A. (2010). Thinking as communicating. human development, the growth of discourses, and mathematizing. Cambridge University Press.Google Scholar
  27. Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning. 2(1). Retrieved from
  28. Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.CrossRefGoogle Scholar
  29. Trouche, L., & Drijvers, P. (2014). Webbing and orchestration. Two interrelated views on digital tools in mathematics education, Teaching Mathematics and Its Applications: International Journal of the Institute of Mathematics and its Applications, 33(3), 193–209, doi:  10.1093/teamat/hru014, Retrieved from ijkey=P83FxYUzECbG67e&keytype=ref Google Scholar
  30. Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge University Press.Google Scholar
  31. Wong, L.-H., Milrad, M., & Specht, M. (Eds.) (2015). Seamless learning in the age of mobile connectivity. New York: Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Luc Trouche
    • 1
  1. 1.Institut Français de l’EducationEcole Normale Supérieure de LyonLyonFrance

Personalised recommendations