Advertisement

Didactics of Mathematics: Concepts, Roots, Interactions and Dynamics from France

  • Luc Trouche
Chapter
Part of the Mathematics Education Library book series (MELI, volume 110)

Abstract

This chapter analyses specificities of the French field of ‘didactics of mathematics’, questioning its reasons, tracing the geneses of concepts related to artefacts and following influences on, and interactions with the international communities of research. This complex genesis is traced in four sections: a first section on the roots of the didactics of mathematics in France, a second section on two founding theoretical frameworks (the theory of didactical situations of Brousseau, and the theory of conceptual fields of Vergnaud), a third section on the anthropological approach of Chevallard, a fourth focusing on specific approaches dedicated to artefacts and resources in mathematics education. Beyond historical and cultural specificities, the chapter aims to evidence the potential of interactions between teachers and researchers, as well as interactions between researchers in mathematics and mathematics education for improving our understanding of learning and teaching issues in mathematics.

Keywords

Mathematics Education Operational Invariant Mathematical Activity Instrumental Approach Didactical Contract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Artigue, L. (1997). Rapports entre dimensions technique et conceptuelle dans l’activité mathématique avec des systèmes de mathématiques symboliques. In Actes de l’Université d’été « Des outils informatiques dans la classe aux calculatrices symboliques et géométriques : quelles perspectives pour l’enseignement des mathématiques ? » (pp. 19–40). Rennes, France: IREM.Google Scholar
  2. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274. doi: 10.1016/s0277-5395-00-00166-7.CrossRefGoogle Scholar
  3. Artigue, M., & Douady, R. (1986). La didactique des mathématiques en France—Emergence d'un champ scientifique. Revue française de pédagogie, 76, 69–88. Retrieved September 15, 2014, from http://www.persee.fr/web/revues/home/prescript/article/rfp_0556-7807_1986_num_76_1_1503
  4. Artigue, M., Gras, R., Laborde, C., & Tavignot, P. (Eds.). (1994). Vingt ans de didactique des mathématiques en France. Hommage à Guy Brousseau et Gérard Vergnaud. Grenoble, France: La pensée sauvage éditions.Google Scholar
  5. Balacheff, N. (1996). Advanced educational technology: Knowledge revisited. In T. T. Liao (Ed.), Advanced educational technology: Research issues and future potential (pp. 1–20). Berlin: Springer.CrossRefGoogle Scholar
  6. Barbazo, E. (2010). L’APMEP, un acteur politique, scientifique, pédagogique de l’enseignement secondaire mathématique du 20e siècle en France [APMEP, a political, scientific and pedagogic actor in 20th century French secondary mathematics teaching]. PhD. Paris, France: EHESS.Google Scholar
  7. Bass, H. (2008). Moments in the life of ICMI. In M. Menghini, F. Furinghetti, L. Giacardi, & F. Arzarello (Eds.), The first century of the international commission on mathematical instruction (1908-2008). Reflecting and shaping the world of mathematics education (pp. 9–24). Rome: Instituto della Enciclopedia Italiana.Google Scholar
  8. Belhoste, B. (1990). L’enseignement secondaire français et les sciences au début du XXe siècle. La réforme de 1902 des plans d’études et des programmes. Revue d’histoire des sciences, 43(4), 371–400. Retrieved from http://www.persee.fr/web/revues/home/prescript/article/rhs_0151-4105_1990_num_43_4_4502 Google Scholar
  9. Biehler, R., Scholz, R. W., Sträßer, R., & Winkelmann, B. (Eds.). (1994). Didactics of mathematics as a scientific discipline. Dordrecht, The Netherlands: Springer.Google Scholar
  10. Billeter, J.-F. (2002). Leçons sur Tchouang-Tseu. Paris: Editions Allia.Google Scholar
  11. Borel, E. (1904). Les exercices pratiques de mathématiques dans l’enseignement secondaire [Practical exercises in mathematics for secondary instruction]. Revue générale des sciences pures et appliquées, 14, 431–440.Google Scholar
  12. Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs. Objet d’étude et problématique. Recherches en didactique des mathématiques, 19(1), 79–124.Google Scholar
  13. Bourbaki, (1962). L’architecture des mathématiques [The architecture of mathematics]. In François Le Lionnais (Ed.), Les grands courants de la pensée mathématique (2nd ed., pp. 35–47). Paris: Albert Blanchard.Google Scholar
  14. Bronckart, J.-P., & Schurmans, M.-N. (1999). Pierre Bourdieu—Jean Piaget : habitus, schèmes et construction du psychologique. In B. Lahire (Ed.), Le travail sociologique de Pierre Bourdieu. Dettes et critiques. Paris: La Découverte.Google Scholar
  15. Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht, The Netherlands: Springer.Google Scholar
  16. Brousseau, G. (2012). Des dispositifs Piagétiens… aux situations didactiques [From Piagetian experimental designs … to didactical situations]. Education et didactique, 6(2), 103–129. Retrieved from http://educationdidactique.revues.org/1475 Google Scholar
  17. Brousseau, G., Brousseau, N., & Warfield, G. (2014). Teaching fractions through situations: A fundamental experiment. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  18. Chevallard, Y. (1988, August). On didactic transposition theory: Some introductory notes. In International Symposium on Research and Development in Mathematics, Bratislava, Czechoslavakia. Retrieved November 14, from http://yves.chevallard.free.fr/spip/spip/IMG/pdf/On_Didactic_Transposition_Theory.pdf
  19. Chevallard, Y. (1995). Les outils sémiotiques du travail mathématique. « petit x », 42, 33–57.Google Scholar
  20. Chevallard, Y. (1997). Familière et problématique, la figure du professeur. Recherches en didactique des mathématiques, 17(3), 17–54.Google Scholar
  21. Chevallard, Y. (2005). Steps towards a new epistemology in mathematics education. In M. Bosch (ed.), Proceedings of the Fourth European Conference on Research on Mathematics Education (pp. 21–30). FUNDEMI IQS—Universitat Ramon Llull. Retrieved from http://ermeweb.free.fr/CERME4
  22. Cornu, B., & Ralston, A. (Eds.). (1992). The influence of computers and informatics on mathematics and its teaching. ICMI Study Conference Held in Strasbourg, France, March 1985. Second edition published by UNESCO. Retrieved from http://unesdoc.unesco.org/images/0009/000937/093772eo.pdf
  23. Dienes, Z. P. (1970). Les six étapes du processus d’apprentissage en mathématiques. Paris: OCDL.Google Scholar
  24. Douady, R. (1987). Jeux de cadres et dialectique outil objet. Recherches en didactique des mathématiques, 7(2), 5–31.Google Scholar
  25. Douglas, M. (1986). How institutions think? Syracuse, NY: Syracuse University Press.Google Scholar
  26. Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75, 213–234.CrossRefGoogle Scholar
  27. Drijvers, P., Godino, J. D., Font, V., & Trouche, L. (2012). One episode, two lenses. A reflective analysis of student learning with computer algebra from instrumental and onto-semiotic perspectives. Educational Studies in Mathematics, 82, 23–49.CrossRefGoogle Scholar
  28. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131. Retrieved from http://www.cimm.ucr.ac.cr/ojs/index.php/eudoxus/article/viewFile/162/297 Google Scholar
  29. Engeström, Y., Miettinen, R., & Punamaki, R.-L. (1999). Perspectives on activity theory. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  30. Gispert, H. (2014). Mathematics education in France, 1900-1980. In A. Karp & G. Schubring (Eds.), Handbook on the history of mathematics education (pp. 229–240). New York: Springer.CrossRefGoogle Scholar
  31. Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199–218.CrossRefGoogle Scholar
  32. Gueudet, G., & Vandebrouck, F. (2011). Technologies et évolution des pratiques enseignantes : études de cas et éclairages théoriques. Recherches en didactique des mathématiques, 31(3), 271–313.Google Scholar
  33. Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2005). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.Google Scholar
  34. Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments. The case of calculators. The International Journal of Computers for Mathematical Learning, 3(3), 195–227. Retrieved from http://link.springer.com/article/10.1023/A:1009892720043#page-1
  35. Hembree, R., & Dessart, D. J. (1986). Effects of hand-held calculators in precollege mathematics education: A meta-analysis. Journal for Research in Mathematics Education, 17(2), 83–99.CrossRefGoogle Scholar
  36. Houzel, C. (2004). Le rôle de Bourbaki dans les mathématiques du vingtième siècle. Gazette des Mathématiciens, 100, 53–63.Google Scholar
  37. Hoyles, C., & Lagrange, J.-B. (2006). The seventeenth ICMI study. Technology revisited. Discussion document. Retrieved December 1, from http://www.mathunion.org/fileadmin/ICMI/files/Digital_Library/DiscussionDocs/DD_icmiStudy17_02.pdf
  38. Hoyles, C., Noss, R., & Kent, P. (2004). On the integration of digital technologies into mathematical classrooms. International Journal of Computers for Mathematical Learning, 9, 309–326.CrossRefGoogle Scholar
  39. Kahane, J.-P. (dir.). (2002). L’enseignement des sciences mathématiques. Rapport au ministre. Commission de réflexion sur l’enseignement des mathématiques. Odile Jacob.Google Scholar
  40. Kahane, J.-P. (2006). Cooperation and competition as a challenge in and beyond the classroom. In ICMI study no. 16 conference. Retrieved from http://www.mathunion.org/fileadmin/ICMI/files/Conferences/ICMI_studies/Study16/icmis16pkahane_03.pdf
  41. Kilpatrick, J. (1994). Vingt ans de didactique française depuis les USA. In M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt ans de didactique des mathématiques en France. Hommage à Guy Brousseau et Gérard Vergnaud (pp. 84–96). Grenoble, France: La pensée sauvage éditions.Google Scholar
  42. Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: A multidimensional study of the evolution of research and innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 239–271). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  43. Lévy-Strauss, C. (1949). Les structures élémentaires de la parenté. Paris: PUF.Google Scholar
  44. Linhart, R. (1978). L’établi. Paris: Éditions de minuit.Google Scholar
  45. Margolinas, C. (2002). Situations, milieux, connaissances : analyse de l’activité du professeur. In J.-L. Dorier, M. Artaud, M. Artigue, R. Berthelot, & R. Floris (Eds.), Actes de la 11 ème Ecole d’Eté de Didactique des Mathématiques (pp. 141–156). Grenoble, France: La pensée sauvage.Google Scholar
  46. Mariotti, M. (2002). The influence of technological advances on students’ mathematics learning. In L. English, M. G. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of international research in mathematics education (pp. 695–723). Hillsdale, NJ: Lawrence Erbaum Associates.Google Scholar
  47. Maschietto, M., & Trouche, L. (2010). Mathematics learning and tools from theoretical, historical and practical points of view: The productive notion of mathematics laboratories. ZDM, International Journal on Mathematics Education, 42(1), 33–47.CrossRefGoogle Scholar
  48. Mauss, M. (1966). The gift: Forms and functions of exchange in archaic societies. London: Cohen & West (original edition).Google Scholar
  49. Menghini, M., Furinghetti, F., Giacardi, L., & Arzarello, F. (Eds.). (2008). The first century of the international commission on mathematical instruction (1908-2008). Reflecting and shaping the world of mathematics education (pp. 9–24). Rome: Instituto della Enciclopedia Italiana.Google Scholar
  50. Monaghan, J. (2001). Teachers’ classroom interactions in ICT-based mathematics lessons. In M. van den Heuvel (Ed.), Proceedings of the 25th International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 383–390). Utrecht, The Netherlands.Google Scholar
  51. Piaget, J., Beth, E. W., Dieudonné, J., Lichnerowicz, A., Choquet, G., & Gattegno, C. (1955). L’enseignement des mathématiques. Neuchâtel, Switzerland: Delachaux & Niestlé.Google Scholar
  52. Poincaré, H. (1904). Les définitions générales en mathématiques. L’Enseignement mathématique, 6, 257–283.Google Scholar
  53. Prediger, S., Arzarello, F., Bosch, M., & Lenfant, A. (Eds.). (2008). Comparing, combining, coordinating—Networking strategies for connecting theoretical approaches. ZDM, The International Journal on Mathematics Education, 40(2), pp. 163–327.Google Scholar
  54. Rabardel, P. (2000). Eléments pour une approche instrumentale en didactique des mathématiques. In M. Bailleul (Ed.), Actes de l’Ecole d’été de didactique des mathématiques, IUFM de Caen, pp. 203–213.Google Scholar
  55. Robert, A., & Rogalski, J. (2002). Le système complexe et cohérent des pratiques des enseignants de mathématiques : une double approche. Canadian Journal of Science, Mathematics and Technology Education (La revue canadienne de l’enseignement des sciences, des mathématiques et des technologies), 2(4), 505–528.CrossRefGoogle Scholar
  56. Rouchier, A. (1994). Naissance et développement de la didactique des mathématiques. In M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt ans de didactique des mathématiques en France. Hommage à Guy Brousseau et Gérard Vergnaud (pp. 148–160). Grenoble, France: La pensée sauvage editions.Google Scholar
  57. Said, E. W. (1978). Orientalism. London: Routledge & Kegan.Google Scholar
  58. Schubring, G. (2010). Historical comments on the use of technology and devices in ICMEs and ICMI. ZDM, The International Journal on Mathematics Education, 42(1), 5–9.CrossRefGoogle Scholar
  59. Strässer, R. (1994). A propos de la transposition franco-allemande en didactique des mathématiques. In M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt ans de didactique des mathématiques en France. Hommage à Guy Brousseau et Gérard Vergnaud (pp. 161–176). Grenoble, France: La pensée sauvage editions.Google Scholar
  60. Sträßer, R. (2009). Instruments for learning and teaching mathematics an attempt to theorize about the role of textbooks, computers and other artefacts to teach and learn mathematics. In Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 67–81).Google Scholar
  61. Sutherland, R., & Balacheff, N. (1999). Didactical complexity of computational environments for the learning of mathematics. International Journal of Computers for Mathematical Learning, 4(1), 1–26.CrossRefGoogle Scholar
  62. Trouche, L. (1997). A la recherche d’une méthode d’étude de “l’action instrumentée”. In Actes de l’Université d’été « Des outils informatiques dans la classe aux calculatrices symboliques et géométriques : quelles perspectives pour l’enseignement des mathématiques » (pp. 113–148). Rennes, France: IREM.Google Scholar
  63. Trouche, L. (2009). Penser la gestion didactique des artefacts pour faire et faire faire des mathématiques : histoire d’un cheminement intellectuel. L’Educateur, 0309, 35–38.Google Scholar
  64. Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.CrossRefGoogle Scholar
  65. Trouche, L., & Drijvers, P. (2014). Webbing and orchestration. Two interrelated views on digital tools in mathematics education. Teaching Mathematics and Its Applications, 33, 193–209. doi: 10.1093/teamat/hru014.CrossRefGoogle Scholar
  66. Vergnaud, G. (2000). Lev Vygotski. Pédagogue et penseur de notre temps. Paris: Hachette.Google Scholar
  67. Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83–94.CrossRefGoogle Scholar
  68. Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.CrossRefGoogle Scholar
  69. Warfield, V. M. (2014). Introduction to didactics. SpringerBriefs in education 30. New York: Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Luc Trouche
    • 1
  1. 1.Institut Français de l’EducationEcole Normale Supérieure de LyonLyonFrance

Personalised recommendations