Advertisement

An Adaptive Parametric Surface Mesh Generation Method Guided by Curvatures

  • Daniel M. B. de SiqueiraEmail author
  • Markos O. Freitas
  • Joaquim B. Cavalcante-Neto
  • Creto A. Vidal
  • Romildo J. da Silva

Summary

This work presents an adaptive mesh generation strategy for parametric surfaces. The proposed strategy is controlled by curvatures and the error measured between the analytical and discrete curvatures guides the adaptive process. The analytical curvature is a mathematical representation that models the domain, whereas the discrete curvature is an approximation of that curvature and depends directly on the used mesh. The proposed strategy presents the following aspects: it is able to refine and coarsen regions of the mesh; it considers the local error measures to ensure good global quality; it ensures good transition of the mesh and it deals with any type of parametric surfaces since it works in the parametric space.

Keywords

Curvatures adaptivity parametric surfaces surface meshes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng, S.-W., Dey, T.K., Ramos, E.A., Ray, T.: Sampling and Meshing a Surface with Guaranteed Topology and Geometry. In: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 280–289 (2004)Google Scholar
  2. 2.
    Boissonnat, J.-D., Oudot, S.: Provably good sampling and meshing of surfaces. Graph. Models 67(5), 405–451 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Kim, S.J., Jeong, W.K., Kim, C.H.: LOD Generation with Discrete Curvature Error Metric. In: Proceedings of Korea Israel Bi-National Conference, pp. 97–104 (1999)Google Scholar
  4. 4.
    Meek, D., Walton, D.: On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Computer Aided Geometric Design 17, 521–543 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. Visual and Mathematics III, 35–57 (2002)Google Scholar
  6. 6.
    Xu, G.: Convergence Analysis of a Discretization Scheme for Gaussian Curvature over Triangular Surfaces. Computer Aided Geometric Design 23(2), 193–207 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Magid, E., Soldea, O., Rivlin, E.: A Comparison of Gaussian and Mean Curvature Estimation Methods on Triangular Meshes of Range Image Data. Computer Vision and Image Understanding 107(3), 139–159 (2007)CrossRefGoogle Scholar
  8. 8.
    Lo, S.H., Lau, T.S.: Finite Element Mesh Generation over Analytical Curved Surfaces. Computers and Structures 59(2), 301–309 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lo, S.H., Lau, T.S.: Mesh Generation over Curved Surfaces with Explicit Control on Discretization Error. Engineering Computations 15(3), 357–373 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Seibold, W., Wyvill, G.: Towards an Understanding of Surfaces through Polygonization. In: Computer Graphics International Conference, p. 416 (1998)Google Scholar
  11. 11.
    Borouchaki, H., Laug, P., George, P.L.: Parametric surface meshing using a combined advancing-front generalized Delaunay approach. International Journal for Numerical Methods in Engineering 49(1-2), 233–259 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tristano, J.R., Owen, S.J., Canann, S.A.: Advancing front surface mesh generation in parametric space using a Riemannian surface definition. In: Proceedings of 7th International Meshing Roundtable, Sandia National Laboratories, pp. 429–445 (1998)Google Scholar
  13. 13.
    Dyn, N., Hormann, K., Kim, S.J., Levin, D.: Optimizing 3D triangulations using discrete curvature analysis. Mathematical Methods for Curves and Surfaces, pp. 135–146 (2000)Google Scholar
  14. 14.
    Miranda, A.C.O., Martha, L.F.: Mesh Generation on High-Curvature Surfaces Based on a Background Quadtree Structure. In: Proceedings of 11th International Meshing Roundtable, Sandia National Laboratories, pp. 333–342 (2002)Google Scholar
  15. 15.
    Miranda, A.C.O., Martha, L.F., Wawrzynek, P.A., Ingraffea, A.R.: Surface mesh regeneration considering curvatures. Engineering with Computers 25(2), 207–219 (2009)CrossRefGoogle Scholar
  16. 16.
    Wang, D., Clark, B., Jiao, X.: An analysis and comparison of parameterization-based computation of differential quantities for discrete surfaces. Computer Aided Geometric Design 26(5), 510–527 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Borrelli, V., Orgereta, F.: Error Term in Pointwise Approximation of the Curvature Term of a Curve. Computer Aided Geometric Design 27(7), 538–550 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rogers, D.F., Adams, J.A.: Mathematical elements for computer graphics, 2nd edn., pp. 420–421. McGraw-Hill Science/Engineering/Math (1990)Google Scholar
  19. 19.
    Wittchen, S., Baehmann, P., Shephard, M.: Robust geometrically based, automatic two-dimensional mesh generation. International Journal for Numerical Methods in Engineering 24, 1043–1078 (1987)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel M. B. de Siqueira
    • 1
    Email author
  • Markos O. Freitas
    • 1
  • Joaquim B. Cavalcante-Neto
    • 1
  • Creto A. Vidal
    • 1
  • Romildo J. da Silva
    • 2
  1. 1.Department of ComputingFederal University of CearáFortalezaBrazil
  2. 2.Department of MathematicsFederal University of CearáFortalezaBrazil

Personalised recommendations