PostBL: Post-mesh Boundary Layer Mesh Generation Tool

  • Rajeev Jain
  • Timothy J. Tautges

Abstract

A boundary layer mesh is a mesh with dense element distribution in the normal direction along specific boundaries. PostBL is a utility to generate boundary layer elements on an existing mesh model. PostBL supports creation of hexahedral, prism, quad, and tri boundary layer elements. It is formulated as an algorithm in MeshKit, which is an open-source library for mesh generation functionalities. Typically, boundary layer mesh generation is a premeshing process; in this effort, however, we start from a model that has already been meshed. Boundary layer elements can be generated along the entire skin or on selected exterior or internal surface boundaries. PostBL mesh operation can be coupled with other MeshKit meshing operations such as Jaal, NetGen, TetGen, and CAMAL and custom meshing tools such as RGG. Simple examples demonstrating generation of boundary layers on different mesh types and the OECD Vattenfall T-Junction benchmark hexahedral mesh are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahrainian, S.S., Mehrdoost, Z.: An automatic unstructured grid generation method for viscous flow simulations. Mathematics and Computers in Simulation (2012)Google Scholar
  2. 2.
    Bottasso, C.L., Detomi, D.: A procedure for tetrahedral boundary layer mesh generation. Engineering with Computers 18(1), 66–79 (2002)Google Scholar
  3. 3.
    CAMAL - The CUBIT Adaptive Meshing Algorithm Library, Sandia National Laboratories, AlbuquerqueGoogle Scholar
  4. 4.
    Dezs, B., Jüttner, A., Kovács, P.: LEMON - An open source C++ graph template library. Electron. Notes Theor. Comput. Sci. 264(5), 23–45 (2011)CrossRefGoogle Scholar
  5. 5.
    Garimella, R.V., Shephard, M.S.: Boundary layer mesh generation for viscous flow simulations. International Journal for Numerical Methods in Engineering 49(1), 193–218 (2000)CrossRefMATHGoogle Scholar
  6. 6.
    Geuzaine, C., Remacle, J.F.: Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Version 2.2. 4 (2008)Google Scholar
  7. 7.
    Guillaume, V., Fornier, Y., Boubekeur, T.: Hybrid Viscous Layer Insertion in a Tetrahedral Mesh. In: IMR, Research Note (2012)Google Scholar
  8. 8.
    Ito, Y., Nakahashi, K.: Unstructured Mesh Generation for Viscous Flow Computations. In: IMR, pp. 367–377 (September 2002)Google Scholar
  9. 9.
    Karman, S.L.: Unstructured viscous layer insertion using linear-elastic smoothing. AIAA Journal 45(1), 168–180 (2007)CrossRefGoogle Scholar
  10. 10.
    Knupp, P.: Mesh quality improvement for SciDAC applications. Journal of Physics: Conference Series 46(1) (September 2006)Google Scholar
  11. 11.
    Loseille, A., Löhner, R.: On 3D anisotropic local remeshing for surface, volume and boundary layers. In: Proceedings of the 18th International Meshing Roundtable, pp. 611–630. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Loseille, A., Löhner, R.: Robust boundary layer mesh generation. In: Jiao, X., Weill, J.-C. (eds.) Proceedings of the 21st International Meshing Roundtable, vol. 123, pp. 493–511. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Maréchal, L.: Advances in octree-based all-hexahedral mesh generation: handling sharp features. In: Proceedings of the 18th International Meshing Roundtable, pp. 65–84. Springer, Berlin (2009)CrossRefGoogle Scholar
  14. 14.
    Merkley, K., Ernst, C., Shepherd, J.F., Borden, M.J.: Methods and applications of generalized sheet insertion for hexahedral meshing. In: Proceedings of the 16th International Meshing Roundtable, pp. 233–250. Springer, Berlin (2008)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    NetGen – automatic mesh generator, Johannes Kepler University Linz (2008)Google Scholar
  17. 17.
    Obabko, A.V., Fischer, P.F., Tautges, T.J., Karabasov, S., Goloviznin, V.M., Zaytsev, M.A., Aksenova, A.E.: CFD validation in OECD/NEA t-junction benchmark (No. ANL/NE-11/25). Argonne National Laboratory, Argonne (2011)CrossRefGoogle Scholar
  18. 18.
    Ollivier-Gooch, C., Diachin, L., Shephard, M.S., Tautges, T., Kraftcheck, J., Leung, V., Miller, M.: An interoperable, data-structure-neutral component for mesh query and manipulation. ACM Transactions on Mathematical Software (TOMS) 37(3), 29 (2010)CrossRefGoogle Scholar
  19. 19.
    Open CASCADE technology website (2000–2010), http://www.opencascade.org
  20. 20.
    Pirzadeh, S.Z.: Advanced unstructured grid generation for complex aerody-namic applications. AIAA Journal 48(5), 904–915 (2010)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Quadros, W.R., Shimada, K.: Hex-layer: layered all-hex mesh generation on thin section solids via chordal surface transformation. In: Proceedings of 11th Inter. National Meshing Roundtable, pp. 169–180 (2002)Google Scholar
  23. 23.
    Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Berlin (2000)MATHGoogle Scholar
  24. 24.
    Si, H.: On refinement of constrained Delaunay tetrahedralizations. In: Proceedings of the 15th International Meshing Roundtable, pp. 509–528. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Sjaardema, G.D., Tautges, T.J., Wilson, T.J., Owen, S.J., Blacker, T.D., Bohnhoff, W.J., Edwards, T.L., Hipp, J.R., Lober, R.R., Mitchell, S.A.: CUBIT mesh generation environment, users manual, vol. 1. Sandia National Laboratories, Albuquerque (1994)Google Scholar
  26. 26.
    Spatial website (2010), http://www.spatial.com/
  27. 27.
    Tautges, T.J.: CGM: a geometry interface for mesh generation, analysis and other applications. Eng. Comput. 17, 486–490 (2005)Google Scholar
  28. 28.
    Tautges, T.J., Meyers, R., Merkley, K., Stimpson, C., Ernst, C.: MOAB: A mesh-oriented database, SAND2004-1592. Sandia National Laboratories, Albuquerque (2004)Google Scholar
  29. 29.
    Tautges, T.J., Jain, R.: Creating geometry and mesh models for nuclear reactor core geometries using a lattice hierarchy-based approach. Engineering with Computers 28(4), 319–329 (2012)CrossRefGoogle Scholar
  30. 30.
    Verma, C.S., Tautges, T.: Jaal: Engineering a high quality all-quadrilateral mesh generator. In: Quadros, W.R. (ed.) Proceedings of the 20th International Meshing Roundtable, vol. 90, pp. 511–530. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wang, F., di Mare, L.: Automated hex meshing for turbomachinery secondary air system. In: Jiao, X., Weill, J.-C. (eds.) Proceedings of the 21st International Meshing Roundtable, vol. 123, pp. 549–566. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Hughes, T.J., Bajaj, C.L.: An automatic 3D mesh generation method for domains with multiple materials. Computer Methods in Applied Mechanics and Engineering 199(5), 405–415 (2010)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rajeev Jain
    • 1
  • Timothy J. Tautges
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations