Weighting of Attributes in an Embedded Rough Approach

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 242)

Abstract

In an embedded approach to feature selection and reduction, a mechanism determining their choice constitutes a part of an inductive learning algorithm, as happens for example in construction of decision trees, artificial neural networks with pruning, or rough sets with activated relative reducts. The paper presents the embedded solution based on assumed weights for reducts and measures defined for conditional attributes, where weighting of these attributes was used in their backward elimination for rule classifiers induced in Dominance-Based Rough Set Approach. The methodology is illustrated with a binary classification case of authorship attribution.

Keywords

feature selection reduction embedded approach DRSA reducts weighting authorship attribution stylometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Craig, H.: Stylistic analysis and authorship studies. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell Publishing Ltd., Oxford (2004)Google Scholar
  2. 2.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Jensen, R., Shen, Q.: Computational Intelligence and feature selection: Rough and fuzzy approaches. Wiley-IEEE Press (2008)Google Scholar
  4. 4.
    Moshkov, M.J., Skowron, A., Suraj, Z.: On covering attribute sets by reducts. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 175–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Pawlak, Z.: Rough sets and intelligent data analysis. Information Sciences 147(1-4), 1–12 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Peng, R.D., Hengartner, N.: Quantitative analysis of literary styles. The American Statistician 56(3), 15–38 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Stańczyk, U.: DRSA decision algorithm analysis in stylometric processing of literary texts. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 600–609. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Stańczyk, U.: Reduct-based analysis of decision algorithms: Application in computational stylistics. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS (LNAI), vol. 6679, pp. 295–302. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Stańczyk, U.: Rough set and artificial neural network approach to computational stylistics. In: Ramanna, S., Jain, L.C., Howlett, R.J. (eds.) Emerging Paradigms in ML and Applications. SIST, vol. 13, pp. 441–470. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations