Visual Simultaneous Localization and Mapping with Direct Orientation Change Measurements

  • Adam Schmidt
  • Marek Kraft
  • Michał Fularz
  • Zuzanna Domagała
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 242)


This paper presents an extension of the visual simultaneous localization and mapping (VSLAM) system with the direct measurements of the robot’s orientation change. Four different sources of the additional measurements were considered: visual odometry using both the 5-point [10, 15] and 8-point algorithm [9], wheel odometry and Inertial Measurement Unit (IMU) measurements. The accuracy of the proposed system was compared with the accuracy of the canonical MonoSLAM [7]. The introduction of the additional measurements allowed to reduce the mean error by 17%.


SLAM odometry robot navigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banks, J., Corke, P.I.: Quantitative evaluation of matching methods and validity measures for stereo vision. The International Journal of Robotics Research 20(7), 512–532 (2001)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Borenstein, J., Everett, H.R., Feng, L.: Where am I? Sensors and methods for mobile robot positioning, vol. 119, p. 120. University of Michigan (1996)Google Scholar
  4. 4.
    Ceriani, S., Fontana, G., Giusti, A., Marzorati, D., Matteucci, M., Migliore, D., Rizzi, D., Sorrenti, D.G., Taddei, P.: Rawseeds ground truth collection systems for indoor self-localization and mapping. Autonomous Robots 27(4), 353–371 (2009)CrossRefGoogle Scholar
  5. 5.
    Civera, J., Davison, A.J., Montiel, J.M.M.: Inverse depth parametrization for monocular SLAM. IEEE Transactions on Robotics 24(5), 932–945 (2008)CrossRefGoogle Scholar
  6. 6.
    Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using active vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 865–880 (2002)CrossRefGoogle Scholar
  7. 7.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  8. 8.
    Fularz, M., Kraft, M., Schmidt, A., Kasiński, A.: FPGA implementation of the robust essential matrix estimation with RANSAC and the 8-point and the 5-point method. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore - Challenge II. LNCS, vol. 7174, pp. 60–71. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, vol. 2. Cambridge University Press (2000)Google Scholar
  10. 10.
    Li, H., Hartley, R.: Five-point motion estimation made easy. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006), pp. 630–633. IEEE (2006)Google Scholar
  11. 11.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006), Poster presentation, CrossRefGoogle Scholar
  12. 12.
    Schmidt, A., Kasiński, A.: The visual SLAM system for a hexapod robot. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part II. LNCS, vol. 6375, pp. 260–267. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1994), pp. 593–600. IEEE (1994)Google Scholar
  14. 14.
    Sim, R., Elinas, P., Griffin, M., Little, J.J.: Vision-based slam using the rao-blackwellised particle filter. In: Proceedings of the International Joint Conference on Artificial Intelligence Workshop on Reasoning with Uncertainty in Robotics, pp. 9–16 (2005)Google Scholar
  15. 15.
    Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. ISPRS Journal of Photogrammetry and Remote Sensing 60(4), 284–294 (2006)CrossRefGoogle Scholar
  16. 16.
    Sturm, J., Visser, A.: An appearance-based visual compass for mobile robots. Robotics and Autonomous Systems 57(5), 536–545 (2009)CrossRefGoogle Scholar
  17. 17.
    Xsens Technologies, B.V.: MTi and MTx User Manual and Technical Documentation. Pantheon 6a, 7521 PR Enschede, The Netherlands (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Adam Schmidt
    • 1
  • Marek Kraft
    • 1
  • Michał Fularz
    • 1
  • Zuzanna Domagała
    • 1
  1. 1.Poznan University of TechnologyPoznanPoland

Personalised recommendations