A Symbolic Approach to Boundary Problems for Linear Partial Differential Equations

Applications to the Completely Reducible Case of the Cauchy Problem with Constant Coefficients
  • Markus Rosenkranz
  • Nalina Phisanbut
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8136)


We introduce a general algebraic setting for describing linear boundary problems in a symbolic computation context, with emphasis on the case of partial differential equations. The general setting is then applied to the Cauchy problem for completely reducible partial differential equations with constant coefficients. While we concentrate on the theoretical features in this paper, the underlying operator ring is implemented and provides a sufficient basis for all methods presented here.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hansen, S.: On the “fundamental principle” of L. Ehrenpreis. In: Partial Differential Equations (Warsaw, 1978). Banach Center Publ., vol. 10, pp. 185–201. PWN, Warsaw (1983)Google Scholar
  2. 2.
    Hörmander, L.: Linear partial differential operators. Springer, Berlin (1976)zbMATHGoogle Scholar
  3. 3.
    John, F.: Partial differential equations, 4th edn. Applied Mathematical Sciences, vol. 1. Springer, New York (1982)Google Scholar
  4. 4.
    Knapp, A.W.: Advanced real analysis. Cornerstones. Birkhäuser Boston Inc., Boston (2005)Google Scholar
  5. 5.
    Korporal, A.: Symbolic Methods for Generalized Green’s Operators and Boundary Problems. PhD thesis, Johannes Kepler University, Linz, Austria (November 2012); Abstracted in ACM Communications in Computer Algebra 46(4(182)) (December 2012)Google Scholar
  6. 6.
    Korporal, A., Regensburger, G., Rosenkranz, M.: Regular and singular boundary problems in MAPLE. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 280–293. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Korporal, A., Regensburger, G., Rosenkranz, M.: Symbolic computation for ordinary boundary problems in maple. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC 2012 (2012) (software presentation)Google Scholar
  8. 8.
    Oberst, U., Pauer, F.: The constructive solution of linear systems of partial difference and differential equations with constant coefficients. Multidimens. Systems Signal Process. 12(3-4), 253–308 (2001); Special issue: Applications of Gröbner bases to multidimensional systems and signal processingMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl (4) 188(1), 123–151 (2009), doi:10.1007/s10231-008-0068-3MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Renardy, M., Rogers, R.C.: An introduction to partial differential equations, 2nd edn. Texts in Applied Mathematics, vol. 13. Springer, New York (2004)zbMATHGoogle Scholar
  11. 11.
    Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Rosenkranz, M.: Functorial programming & integro-differential operators. In: Talk at the International Mathematica Symposium (IMS 2012), London, United Kingdom, June 13 (2012), ucahwts/ims2012/ims2012announce1/IMS2012.htmlGoogle Scholar
  13. 13.
    Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. Journal of Symbolic Computation 43(8), 515–544 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for operations on linear boundary problems. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 269–283. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis of boundary problems: From rewriting to parametrized Gröbner bases. In: Langer, U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and Prospects, pp. 273–331. Springer (2012)Google Scholar
  16. 16.
    Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons, New York (1979)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Markus Rosenkranz
    • 1
  • Nalina Phisanbut
    • 1
  1. 1.University of KentCanterburyUnited Kingdom

Personalised recommendations