Sparse Classification with MRI Based Markers for Neuromuscular Disease Categorization

  • Katerina Gkirtzou
  • Jean-François Deux
  • Guillaume Bassez
  • Aristeidis Sotiras
  • Alain Rahmouni
  • Thibault Varacca
  • Nikos Paragios
  • Matthew B. Blaschko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)

Abstract

In this paper, we present a novel method for disease classification between two patient populations based on features extracted from Magnetic Resonance Imaging (MRI) data. Anatomically meaningful features are extracted from structural data (T1- and T2-weighted MR images) and Diffusion Tensor Imaging (DTI) data, and used to train a new machine learning algorithm, the k-support SVM (ksup-SVM). The k-support regularized SVM has an inherent feature selection property, and thus it eliminates the requirement for a separate feature selection step. Our dataset consists of patients that suffer from facioscapulohumeral muscular dystrophy (FSH) and Myotonic muscular dystrophy type 1 (DM1) and our proposed method achieves a high performance. More specifically, it achieves a mean Area Under the Curve (AUC) of 0.7141 and mean accuracy 77%±0.013. Moreover, we provide a sparsity visualization of the features in order to indentify their discriminative value. The results suggest the potential of the combined use of MR markers to diagnose myopathies, and the general utility of the ksup-SVM. Source code is also available at https://gitorious.org/ksup-svm.

Keywords

myopathies Diffusion Tensor Imaging k-support regularized SVM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging 13, 534–546 (2001)CrossRefGoogle Scholar
  2. 2.
    Gilbert, R.J., Napadow, V.J.: Three-dimensional muscular architecture of the human tongue determined in vivo with diffusion tensor magnetic resonance imaging. Dysphagia 20, 1–7 (2005)CrossRefGoogle Scholar
  3. 3.
    Galban, C.J., Maderwald, S., Uffmann, K., de Greiff, A., Ladd, M.E.: Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf. European Journal of Applied Physiology 93, 253–262 (2004)CrossRefGoogle Scholar
  4. 4.
    Qi, J., Olsen, N.J., Price, R.R., Winston, J.A., Park, J.H.: Diffusion-weighted imaging of inflammatory myopathies: Polymyositis and dermatomyositis. Journal of Magnetic Resonance Imaging 27, 212–217 (2008)CrossRefGoogle Scholar
  5. 5.
    Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack, C.R., Ashburner, J., Frackowiak, R.S.: Automatic classification of mr scans in alzheimer’s disease. Brain 131, 681–689 (2008)CrossRefGoogle Scholar
  6. 6.
    Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S.M., Davatzikos, C.: Morphological classification of brains via high-dimensional shape transformations and machine learning methods. Neuroimage 21, 46–57 (2004)CrossRefGoogle Scholar
  7. 7.
    LaConte, S., Strother, S., Cherkassky, V., et al.: Support vector machines for temporal classification of block design fmri data. NeuroImage 26, 317 (2005)CrossRefGoogle Scholar
  8. 8.
    Ingalhalikar, M., Parker, D., Bloy, L., Roberts, T.P., Verma, R.: Diffusion based abnormality markers of pathology: Toward learned diagnostic prediction of asd. Neuroimage 57, 918–927 (2011)CrossRefGoogle Scholar
  9. 9.
    Caan, M., Vermeer, K., Van Vliet, L., Majoie, C., Peters, B., den Heeten, G., Vos, F.: Shaving diffusion tensor images in discriminant analysis: A study into schizophrenia. Medical Image Analysis 10, 841–849 (2006)CrossRefGoogle Scholar
  10. 10.
    Wang, P., Verma, R.: On classifying disease-induced patterns in the brain using diffusion tensor images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 908–916. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Argyriou, A., Foygel, R., Srebro, N.: Sparse Prediction with the k-Support Norm. In: Advances in Neural Information Processing Systems, NIPS (2012)Google Scholar
  12. 12.
    Zou, H., Hastie, T.: Regularization and variable selection via the Elastic Net. Journal of the Royal Statistical Society, Series B 67, 301–320 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)MATHGoogle Scholar
  14. 14.
    Wang, P., Gur, R., Verma, R.: A novel framework for identifying dti-based brain patterns of schizophrenia. In: ISMRM, Toronto, pp. 3–9 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Katerina Gkirtzou
    • 1
    • 2
  • Jean-François Deux
    • 3
  • Guillaume Bassez
    • 3
  • Aristeidis Sotiras
    • 4
  • Alain Rahmouni
    • 3
  • Thibault Varacca
    • 3
  • Nikos Paragios
    • 1
    • 2
  • Matthew B. Blaschko
    • 1
    • 2
  1. 1.Center for Visual ComputingÉcole Centrale ParisFrance
  2. 2.Équipe Galen, INRIA SaclayÎle-de-FranceFrance
  3. 3.Henri Mondor University HospitalCréteilFrance
  4. 4.Department of RadiologyUniversity of PennsylvaniaUSA

Personalised recommendations