Augmenting Auto-context with Global Geometric Features for Spinal Cord Segmentation

  • Jeremy Kawahara
  • Chris McIntosh
  • Roger Tam
  • Ghassan Hamarneh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)

Abstract

Anatomical shape variations are typically difficult to model and parametric or hand-crafted models can lead to ill-fitting segmentations. This difficulty can be addressed with a framework like auto-context, that learns to jointly detect and regularize a segmentation. However, mis-segmentation can still occur when a desired structure, such as the spinal cord, has few locally distinct features. High-level knowledge at a global scale (e.g. an MRI contains a single connected spinal cord) is needed to regularize these candidate segmentations. To encode high-level knowledge, we propose to augment the auto-context framework with global geometric features extracted from the detected candidate shapes. Our classifier then learns these high-level rules and rejects falsely detected shapes. To validate our method we segment the spinal cords from 20 MRI volumes composed of patients with and without multiple sclerosis and demonstrate improvements in accuracy, speed, and manual effort required when compared to state-of-the-art methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, M., Carass, A., Cuzzocreo, J., Bazin, P.L., Reich, D.S., Prince, J.L.: Topology preserving automatic segmentation of the spinal cord in magnetic resonance images. In: IEEE ISBI, pp. 1737–1740 (2011)Google Scholar
  2. 2.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends® in Computer Graphics and Vision 7(2-3), 81–227 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Horsfield, M.A., Sala, S., Neema, M., Absinta, M., Bakshi, A., Sormani, M.P., Rocca, M.A., Bakshi, R., Filippi, M.: Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: Application in multiple sclerosis. Neuroimage 50(2), 446–455 (2010)CrossRefGoogle Scholar
  4. 4.
    Kawahara, J., McIntosh, C., Tam, R., Hamarneh, G.: Globally optimal spinal cord segmentation using a minimal path in high dimensions. In: IEEE ISBI, pp. 836–839 (2013)Google Scholar
  5. 5.
    Kontschieder, P., Kohli, P., Shotton, J., Criminisi, A.: GeoF: Geodesic forests for learning coupled predictors. In: IEEE CVPR (2013)Google Scholar
  6. 6.
    McIntosh, C., Hamarneh, G.: Spinal crawlers: Deformable organisms for spinal cord segmentation and analysis. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 808–815. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    McIntosh, C., Hamarneh, G., Toom, M., Tam, R.: Spinal cord segmentation for volume estimation in healthy and multiple sclerosis subjects using crawlers and minimal paths. In: IEEE HISB, pp. 25–31 (2011)Google Scholar
  8. 8.
    Rocca, M., Horsfield, M., Sala, S., Copetti, M., Valsasina, P., Mesaros, S., Martinelli, V., Caputo, D., Stosic-Opincal, T., Drulovic, J., Comi, G., Filippi, M.: A multicenter assessment of cervical cord atrophy among MS clinical phenotypes. Neurology 76(24), 2096–2102 (2011)CrossRefGoogle Scholar
  9. 9.
    Szummer, M., Kohli, P., Hoiem, D.: Learning CRFs using graph cuts. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 582–595. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Tench, C.R., Morgan, P.S., Constantinescu, C.S.: Measurement of cervical spinal cord cross-sectional area by MRI using edge detection and partial volume correction. J. Magn. Reson. Imaging 21(3), 197–203 (2005)CrossRefGoogle Scholar
  11. 11.
    Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE TPAMI 32(10), 1744–1757 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Jeremy Kawahara
    • 1
  • Chris McIntosh
    • 1
    • 2
  • Roger Tam
    • 3
  • Ghassan Hamarneh
    • 1
  1. 1.Medical Image Analysis Lab.Simon Fraser UniversityBurnabyCanada
  2. 2.Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
  3. 3.MS/MRI Research GroupUniversity of British ColumbiaVancouverCanada

Personalised recommendations