fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics

  • Katerina Gkirtzou
  • Jean Honorio
  • Dimitris Samaras
  • Rita Goldstein
  • Matthew B. Blaschko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8184)

Abstract

fMRI analysis has most often been approached with linear methods. However, this disregards information encoded in the relationships between voxels. We propose to exploit the inherent spatial structure of the brain to improve the prediction performance of fMRI analysis. We do so in an exploratory fashion by representing the fMRI data by graphs. We use the Weisfeiler-Lehman algorithm to efficiently compute subtree features of the graphs. These features encode non-linear interactions between voxels, which contain additional discriminative information that cannot be captured by a linear classifier. In order to make use of the efficiency of the Weisfeiler-Lehman algorithm, we introduce a novel pyramid quantization strategy to approximate continuously labeled graphs with a sequence of discretely labeled graphs. To control the capacity of the resulting prediction function, we utilize the elastic net sparsity regularizer. We validate our method on a cocaine addiction dataset showing a significant improvement over elastic net and kernel ridge regression baselines and a reduction in classification error of over 14%. Source code is also available at https://gitorious.org/wlpyramid.

Keywords

fMRI graph kernels Weisfeiler-Lehman sparse regression cocaine addiction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Demirci, O., Clark, V., Calhoun, V.: A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia. Neuroimage 39 (2008)Google Scholar
  2. 2.
    Wang, X., Hutchinson, R., Mitchell, T.M.: Training fMRI classifiers to discriminate cognitive states across multiple subjects. In: NIPS (2003)Google Scholar
  3. 3.
    Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to decode cognitive states from brain images. Machine Learning 57, 145–175 (2004)CrossRefMATHGoogle Scholar
  4. 4.
    Tahmasebi, A.M., Artiges, E., Banaschewski, T., Barker, G.J., Bruehl, R., Bchel, C., Conrod, P.J., Flor, H., Garavan, H., Gallinat, J., Heinz, A., Ittermann, B., Loth, E., Mareckova, K., Martinot, J.L., Poline, J.B., Rietschel, M., Smolka, M.N., et al.: Creating probabilistic maps of the face network in the adolescent brain: A multicentre functional mri study. Human Brain Mapping 33, 938–957 (2012)CrossRefGoogle Scholar
  5. 5.
    Honorio, J., Tomasi, D., Goldstein, R., Leung, H., Samaras, D.: Can a single brain region predict a disorder? IEEE Transactions on Medical Imaging (2012)Google Scholar
  6. 6.
    Carroll, M., Cecchi, G., Rish, I., Garg, R., Rao, A.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44, 112–122 (2009)CrossRefGoogle Scholar
  7. 7.
    Gkirtzou, K., Honorio, J., Samaras, D., Goldstein, R., Blaschko, M.B.: fMRI analysis of cocaine addiction using k-support sparsity. In: ISBI (2013)Google Scholar
  8. 8.
    Venkataraman, A., Kubicki, M., Golland, P.: From brain connectivity models to identifying foci of a neurological disorder. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 715–722. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T.: Disrupted small-world networks in schizophrenia. Brain 131 (2008)Google Scholar
  10. 10.
    Mokhtari, F., Hossein-Zadeh, G.A.: Decoding brain states using backward edge elimination and graph kernels in fMRI connectivity networks. Journal of Neuroscience Methods 212, 259–268 (2013)CrossRefGoogle Scholar
  11. 11.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B 67, 301–320 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. JMLR 12, 2539–2561 (2011)Google Scholar
  13. 13.
    Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets of features. J. Mach. Learn. Res. 8, 725–760 (2007)MATHGoogle Scholar
  14. 14.
    Goldstein, R., Alia-Klein, N., Tomasi, D., Carrillo, J., Maloney, T., Woicik, P., Wang, R., Telang, F., Volkow, N.: Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. PNAS 106, 9453 (2009)CrossRefGoogle Scholar
  15. 15.
    Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R.I., Borgwardt, K.M.: Graph kernels. JMLR 11, 1201–1242 (2010)MathSciNetMATHGoogle Scholar
  16. 16.
    Sporns, O.: Networks of the Brain. MIT Press (2010)Google Scholar
  17. 17.
    Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage 54, 1812–1822 (2011)CrossRefGoogle Scholar
  18. 18.
    Weisfeiler, B., Lehman, A.A.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Tech. Informatsia, Ser. 2(9) (1968)Google Scholar
  19. 19.
    Goldstein, R.Z., Woicik, P.A., Maloney, T., Tomasi, D., Alia-Klein, N., Shan, J., Honorio, J., Samaras, D., Wang, R., Telang, F., Wang, G.J., Volkow, N.D.: Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. PNAS 107, 16667–16672 (2010)CrossRefGoogle Scholar
  20. 20.
    Culbertson, C., Bramen, J., Cohen, M., London, E.D., Olmstead, R.E., Gan, J.J., Costello, M.R., Shulenberger, S., Mandelkern, M.A., Brody, A.L.: Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers. Archives of General Psychiatry 68, 505–515 (2011)CrossRefGoogle Scholar
  21. 21.
    Franklin, T.R., Wang, Z., Li, Y., Suh, J.J., Goldman, M., Lohoff, F.W., Cruz, J., Hazan, R., Jens, W., Detre, J.A., Berrettini, W., O’Brien, C.P., Childress, A.R.: Dopamine transporter genotype modulation of neural responses to smoking cues: confirmation in a new cohort. Addiction Biology 16, 308–322 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Katerina Gkirtzou
    • 1
    • 2
  • Jean Honorio
    • 3
  • Dimitris Samaras
    • 4
  • Rita Goldstein
    • 5
  • Matthew B. Blaschko
    • 1
    • 2
  1. 1.Center for Visual ComputingÉcole Centrale ParisFrance
  2. 2.Équipe Galen, INRIA SaclayÎle-de-FranceFrance
  3. 3.CSAILMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Computer Science DepartmentStony Brook UniversityUSA
  5. 5.Icahn School of MedicineMount SinaiUSA

Personalised recommendations