Simplified Models for Coarse-Grained Hemodynamics Simulations

  • J. Harting
  • F. Janoschek
  • B. Kaoui
  • T. Krüger
  • F. Toschi
Conference paper


Human blood can be approximated as a dense suspension of red blood cells in plasma. Here, we present two models we recently developed to investigate blood flow on different scales: in the first part of the paper we concentrate on describing individual cells or model systems such as vesicles with high resolution in order to understand the underlying fundamental properties of bulk hemodynamics. Here, we combine a lattice Boltzmann solver for the plasma with an immersed boundary algorithm to describe the cell or vesicle membranes. This method allows a detailed study of individual particles in complex hydrodynamic situations. Further, this model can be used to provide parameters for a more coarse-grained approach: in that second approach we simplify much further than existing particulate models. We find the essential ingredients for a minimalist description that still recovers hemorheology. These ingredients include again a lattice Boltzmann method describing hydrodynamic long range interactions mediated by the plasma between cells. The cells themselves are simplified as rigid ellipsoidal particles, where we describe the more complex short-range behavior by anisotropic model potentials. Recent results on the behaviour of single viscous red blood cells and vesicles in confined flow situations are shown alongside with results from the validation of our simplified model involving thousands or even millions of cells.





We thank the Scientific Supercomputing Center Karlsruhe for providing the computing time and technical support for the presented work.


  1. 1.
    H.L. Goldsmith, R. Skalak, Hemodynamics. Annu. Rev. Fluid Mech. 7, 213–247 (1975)CrossRefGoogle Scholar
  2. 2.
    E. Evans, Y.C. Fung, Improved measurements of the erythrocyte geometry. Microvasc. Res. 4, 335–347 (1972)CrossRefGoogle Scholar
  3. 3.
    J. Boyd, J.M. Buick, S. Green, Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Phys. Fluids 19, 093103 (2007)CrossRefGoogle Scholar
  4. 4.
    H. Noguchi, G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl. Acad. Sci. USA 102, 14159–14164 (2005)CrossRefGoogle Scholar
  5. 5.
    M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn, Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75, 066707 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Wu, C.K. Aidun, Simulating 3D deformable particle suspensions using lattice boltzmann method with discrete external boundary force. Int. J. Numer. Methods Fluids 62(7), 765–783 (2010)MATHGoogle Scholar
  7. 7.
    T. Krüger, F. Varnik, D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485–3505 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    T. Krüger, F. Varnik, D. Raabe, Particle stress in suspensions of soft objects. Philos. Trans. R. Soc. Lond. A 369, 2414–2421 (2011)CrossRefMATHGoogle Scholar
  9. 9.
    C. Sun, C. Migliorini, L.L. Munn, Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice boltzmann analysis. Biophys. J. 85(1), 208–222 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Hyakutake, T. Matsumoto, S. Yanase, Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations. Math. Comput. Simul. 72(2–6), 134–140 (2006)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    F. Janoschek, F. Toschi, J. Harting, Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E 82, 056710 (2010)CrossRefGoogle Scholar
  12. 12.
    T.M. Fischer, Is the surface area of the red cell membrane skeleton locally conserved? Biophys. J. 61, 298 (1992)CrossRefGoogle Scholar
  13. 13.
    B. Kaoui, J. Harting, C. Misbah, Two-dimensional vesicle dynamics under shear flow: effect of confinement. Phys. Rev. E 83, 066319 (2011)CrossRefGoogle Scholar
  14. 14.
    B. Kaoui, T. Krüger, J. Harting, How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matter 8, 9246 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Numerical Mathematics and Scientific Computation (Oxford University Press, Oxford, 2001)MATHGoogle Scholar
  16. 16.
    C. Peskin, The immersed boundary method. Acta Numer. 11, 479 (2002)MATHMathSciNetGoogle Scholar
  17. 17.
    C.K. Aidun, Y. Lu, E.-J. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287–311 (1998)CrossRefMATHGoogle Scholar
  18. 18.
    N.-Q. Nguyen, A.J.C. Ladd, Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66, 046708 (2002)CrossRefGoogle Scholar
  19. 19.
    S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–979 (1970)CrossRefGoogle Scholar
  20. 20.
    B.J. Berne, P. Pechukas, Gaussian model potentials for molecular interactions. J. Chem. Phys. 56, 4213–4216 (1972)CrossRefGoogle Scholar
  21. 21.
    J. Harting, J. Chin, M. Venturoli, P.V. Coveney, Large-scale lattice boltzmann simulations of complex fluids: advances through the advent of computational grids. Philos. Trans. R. Soc. Lond. A 363, 1895–1915 (2005)CrossRefMathSciNetGoogle Scholar
  22. 22.
    F. Janoschek, F. Toschi, J. Harting, Simulations of blood flow in plain cylindrical and constricted vessels with single cell resolution. Macromol. Theory Simul. 20, 562 (2011)CrossRefGoogle Scholar
  23. 23.
    F. Günther, F. Janoschek, S. Frijters, J. Harting, Lattice boltzmann simulations of anisotropic particles at liquid interfaces. Comput. Fluids 80, 184 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Harting, T. Zauner, A. Narvaez, R. Hilfer, Flow in porous media and driven colloidal suspensions, in High Performance Computing in Science and Engineering ’08, ed. by W. Nagel, D. Kröner, M. Resch (Springer, Berlin, 2008)Google Scholar
  25. 25.
    S. Schmieschek, A. Narváez Salazar, J. Harting, Multi relaxation time lattice boltzmann simulations of multiple component fluid flows in porous media, in High Performance Computing in Science and Engineering ’12, ed. by W. Nagel, D. Kröner, M. Resch (Springer, Berlin, 2013), p. 39Google Scholar
  26. 26.
    A.M. Forsyth, J.D. Wan, P.D. Owrutsky, M. Abkarian, H.A. Stone, Multiscale approach to link red blood cell dynamics, shear viscosity, and atp release. Proc. Natl. Acad. Sci. USA 108, 10986 (2011)CrossRefGoogle Scholar
  27. 27.
    V. Vitkova, M.-A. Mader, B. Polack, C. Misbah, T. Podgorski, Micro-macro link in rheology of erythrocyte and vesicle suspensions. Biophys. J. 95, L33 (2008)CrossRefGoogle Scholar
  28. 28.
    S. Keller, R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 27 (1982)CrossRefMATHGoogle Scholar
  29. 29.
    J. Beaucourt, F. Rioual, T. Seon, T. Biben, C. Misbah, Steady to unsteady dynamics of a vesicle in a flow. Phys. Rev. E 69, 011906 (2004)CrossRefGoogle Scholar
  30. 30.
    V. Kantsler, V. Steinberg, Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96, 036001 (2006)CrossRefGoogle Scholar
  31. 31.
    G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161 (1922)CrossRefGoogle Scholar
  32. 32.
    H. Noguchi, G. Gompper, Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 98, 128103 (2007)CrossRefGoogle Scholar
  33. 33.
    V.V. Lebedev, K.S. Turitsyn, S.S. Vergeles, Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99, 218101 (2007)CrossRefGoogle Scholar
  34. 34.
    B. Kaoui, A. Farutin, C.C. Misbah, Vesicles under simple shear flow: elucidating the role of relevant control parameters. Phys. Rev. E 80, 061905 (2009)CrossRefGoogle Scholar
  35. 35.
    J. Deschamps, V. Kantsler, V. Steinberg, Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102, 118105 (2009)CrossRefGoogle Scholar
  36. 36.
    T. Krüger, S. Frijters, F. Günther, B. Kaoui, J. Harting, Numerical simulations of complex fluid-fluid interface dynamics. Eur. Phys. J. Spec. Topics 222, 177 (2013)CrossRefGoogle Scholar
  37. 37.
    A.J. Wagner, J.M. Yeomans, Phase separation under shear in two-dimensional binary fluids. Phys. Rev. E 59, 4366–4373 (1999)CrossRefGoogle Scholar
  38. 38.
    F. Janoschek, F. Mancini, J. Harting, F. Toschi, Rotational behavior of red blood cells in suspension—a mesoscale simulation study. Philos. Trans. R. Soc. Lond. A 369(1944), 2337–2344 (2011)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    A.S. Popel, P.C. Johnson, Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37(1), 43–69 (2005)CrossRefMathSciNetGoogle Scholar
  40. 40.
    A.R. Pries, D. Neuhaus, P. Gaehtgens, Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. Heart Circ. Physiol. 263(6), H1770–1778 (1992)Google Scholar
  41. 41.
    T.W. Secomb, Mechanics of red blood cells and blood flow in narrow tubes, in Modeling and Simulation of Capsules and Biological Cells, ed. by C. Pozrikidis (Chapman & Hall, London, 2003), pp. 163–196Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • J. Harting
    • 1
    • 2
  • F. Janoschek
    • 1
    • 2
  • B. Kaoui
    • 1
  • T. Krüger
    • 3
  • F. Toschi
    • 1
    • 4
  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Institute for Computational PhysicsUniversity of StuttgartStuttgartGermany
  3. 3.Centre for Computational ScienceUniversity College LondonLondonUK
  4. 4.CNR-IACRomeItaly

Personalised recommendations