Poás Volcano pp 213-233 | Cite as

39 Years of Geochemical Monitoring of Laguna Caliente Crater Lake, Poás: Patterns from the Past as Keys for the Future

  • Dmitri RouwetEmail author
  • Raúl Alberto Mora Amador
  • Laura Sandri
  • Carlos Ramírez-Umaña
  • Gino González
  • Giovannella Pecoraino
  • Bruno Capaccioni
Part of the Active Volcanoes of the World book series (AVOLCAN)


Since 1978 water chemistry of the Laguna Caliente crater lake has been used to monitor volcanic activity at Poás, Costa Rica, making it arguably the best studied hyper-acidic crater lake on Earth. During these 39 years, three phases of unrest occurred, manifested through frequent phreatic eruptions, with each a duration of several years to over a decade (1978–1980, 1986–1996, 2006–2016). We here present a novel technique to deal with the long time series of the chemical composition of water of Laguna Caliente, independent on previous deterministic research and resulting conceptual models. Common patterns of chemical parameters in relation with phreatic eruptive activity for the period 1978–September 2014 are sought, applying the objective statistical method of Pattern Recognition. This resulted in the definition of the strongest precursory signals and their respective thresholds. Numerical outcomes often confirm findings based on geochemical models (e.g. SO4, SO4/Cl and pH are strong monitoring parameters). However, some surprising parameters (opposite behavior of Mg/Cl ratios, decreases in Ca and Mg concentrations, increasing Al/Mg ratios) still need a geochemical explanation and should be a focus for future research strategies. The obtained parameters and thresholds were retrospectively applied for the “test period” of the Pattern Recognition method (November 2014–February 2016). This test provided hints that suggested that eruptive activity at Poás was not yet over, despite apparent quiescence in early 2016. Indeed, after new phreatic eruptions since May 2016, the 2006–2016 phreatic eruptive cycle culminated in phreatomagmatic activity in April 2017. We conclude that evaluating time series of chemical composition of crater lakes framed in the Pattern Recognition method can be a useful monitoring approach. Moreover, increased sampling frequency can provide more details and more adequate prediction of phreatic activity at Poás. Comparing Laguna Caliente with other two well monitored acidic crater lakes (Ruapehu Crater Lake, New Zealand and Yugama, Kusatsu-Shirane, Japan) Poás results unique in many ways and undoubtedly the most active crater lake of the three during the past four decades.


Poás volcano Laguna Caliente Lake water chemistry Volcano monitoring Phreatic eruptions Unrest Pattern recognition 



Diego Castioni and Piero Trentini are thanked for help in the analyses. DR and LS are supported by the FREAPROB project, INGV-Struttura Vulcani. We are grateful to Corentin Caudron and Francesco Frondini for their constructive reviews. Orlando Vaselli is thanked for swift editing. We warmly dedicate this study to our friend and co-author Bruno who suddenly passed away during the writing of this chapter.


  1. Alvarado GE (2010) Aspectos geohidrológicos y sedimentológicos de los flujos de lodo asociados al terremoto de Cinchona (Mw 6.2) del 8 de enero del 2009. Costa Rica. Rev Geol Am Centr 43:67–96 (In Spanish with English abstract)Google Scholar
  2. Brantley SL, Brogia A, Rowe G, Fernández JF, Reynolds JR (1987) Poás volcano crater lake acts as a condenser for acid metal-rich brine. Nature 330:470–472CrossRefGoogle Scholar
  3. Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poás crater lake: implications for predicting volcanic activity. Nature 339:370–373CrossRefGoogle Scholar
  4. Browne PRL, Lawless JV (2001) Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth Sci Rev 52:299–331CrossRefGoogle Scholar
  5. Capaccioni B, Rouwet D, Tassi F (2016) HCl degassing from extremely acidic crater lakes: preliminary results from experimental determinations and implications for geochemical monitoring. In: Caudron C, Capaccioni B, Ohba T (eds) Geochemistry and geophysics of volcanic lakes. Geol Soc London, Special Publications 437.
  6. Casertano L, Borgia A, Cigolini C (1983) El Volcán Poás, Costa Rica: Cronologia y características de la actividad. Geofis Int 3:215–236Google Scholar
  7. Caudron C, Lecoq T, Syahbana DK, McCausland W, Watlet A, Camelbeeck T, Bernard A, Surono (2015) Stress and mass changes at a “wet” volcano: example during the 2011–2012 volcanic unrest at Kawah Ijen volcano (Indonesia). J Geophys Res, Solid Earth 120.
  8. Christenson BW (1994) Convection and stratification in Ruapehu Crater Lake, New Zealand: implications for Lake Nyos-Type gas release eruptions. Geochem J 28:185–197CrossRefGoogle Scholar
  9. Christenson BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal system. J Volcanol Geothermal Res 97:1–30CrossRefGoogle Scholar
  10. Christenson BW, Wood CP (1993) The evolution of a volcano-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand. Bull Volcanol 55:547–565CrossRefGoogle Scholar
  11. Christenson BW, Reyes AG, Young R, Moebis A, Sherburn S, Cole-Baker J, Britten K (2010) Cyclic processes and factors leading to phreatic eruption events: insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. J Volcanol Geotherm Res 191:15–32. Scholar
  12. de Moor JM, Aiuppa A, Pacheco J, Avard G, Kern C, Liuzzo M, Martínez M, Giudice G, Fischer TP (2016) Short-period volcanic gas precursors to phreatic eruptions: insights from Poás Volcano, Costa Rica. Earth Planet Sci Lett 442:218–227. Scholar
  13. Fischer TP, Ramírez C, Mora-Amador RA, Hilton DR, Barnes JD, Sharp ZD, de Moor JM, Barry PH, Füri E, Shaw AM (2015) Temporal variations in fumarole gas chemistry at Poás volcano, Costa Rica. J Volcanol Geothermal Res 294:56–70. Scholar
  14. Giggenbach WF (1974) The chemistry of Crater Lake, Mt Ruapehu (New Zealand) during and after the 1971 active period. NZ J Sci 17:33–45Google Scholar
  15. Gunawan H, Caudron C, Pallister J, Primulyana S, Christenson B, McCausland W, Van Hinsberg V, Lewicki J, Rouwet D, Kelly P, Kern C, Werner C, Johnson JB, Budi Utami S, Syahbana DK, Saing U, Suparjan, Heri Purwanto B, Sealing C, Martínez-Cruz M, Maryanto S, Bani P, Laurin A, Schmid A, Bradley K, Made Agung Nandaka IG, Hendrasto M (2016) New insights into Kawah Ijen’s volcanic system from the wet volcano workshop experiment. In: Caudron C, Capaccioni B, Ohba T (eds) Geochemistry and geophysics of volcanic lakes. Geol Soc London, Special Publications 437.
  16. Hurst T, Hashimoto T, Terada A (2015) Crater lake energy and mass balance. In: Rouwet D, Christenson BW, Tassi, F, Vandemeulebrouck J (eds) Volcanic lakes. Springer-Heidelberg, pp 307–322.
  17. Martínez M (2008) Geochemical evolution of the acidic crater lake of Poás volcano (Costa Rica): insights into volcanic-hydrothermal processes. Ph.D. Thesis, Universiteit Utrecht, 162 pGoogle Scholar
  18. Martínez M, Fernández E, Valdés J, Barboza V, Van der Laat R, Duarte E, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and volcanic activity of the active crater lake of Poás volcano, Costa Rica, 1993–1997. J Volcanol Geochem Res 97:127–141CrossRefGoogle Scholar
  19. Mora-Amador RA (2010) Peligrosidad volcánica del Poás (Costa Rica), basado en las principales erupciones históricas de 1834, 1910 y 1953–1955. M.Sc. Thesis, Universidad de Costa Rica, 115 pGoogle Scholar
  20. Mora-Amador R, Rouwet D, Vargas P (Chapter 3) The extraordinary sulfur eruptions of Poás volcano from 1828 to 2016. In: Tassi F, Mora-Amador R, Vaselli O (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg (Germany)Google Scholar
  21. Mora-Amador RA, Ramírez-Umaña CJ (2008) Sulfur flows at Poás volcano, Costa Rica. IAVCEI Reykjavík, Iceland General AssemblyGoogle Scholar
  22. Mora-Amador RA, Ramírez C, Fernández M (2004) La actividad de los volcanes de la Cordillera Central, Costa Rica, entre 1998–2002. Rev Geol Am Centr 30:189–197Google Scholar
  23. Mora-Amador RA, Ramírez CJ, González G, Rouwet D, Rojas A (2010) Laguna Caliente, Poás Volcano, Costa Rica: the most active crater lake of the world (2006–2010). Makavol Abstract, Fogo WorkshopGoogle Scholar
  24. Mulargia F, Gasperini P, Marzocchi W (1991) Pattern recognition applied to volcanic activity: identification of the precursory patterns to Etna recent flank eruptions and periods of rest. J Volcanol Geotherm Res 45:187–196CrossRefGoogle Scholar
  25. Ohba T, Hirabayashi J, Nogami K (2000) D/H and 18O/16O ratios of water in the crater lake at Kusatsu-Shirane volcano, Japan. J Volcanol Geotherm Res 97:329–346CrossRefGoogle Scholar
  26. Ohba T, Hirabayashi J, Nogami K (2008) Temporal changes in the chemistry of lake water within Yugama Crater, Kusatsu-Shirane Volcano, Japan: implications for the evolution of the magmatic-hydrothermal system. J Volcanol Geotherm Res 178:131–144CrossRefGoogle Scholar
  27. Oppenheimer C (1992) Sulphur eruptions at Volcán Poás, Costa Rica. J Volcanol Geotherm Res 49:1–21CrossRefGoogle Scholar
  28. Oppenheimer C, Stevenson D (1989) Liquid sulphur lakes at Poás volcano. Nature 342:790–793CrossRefGoogle Scholar
  29. Ossaka J, Ossaka T, Hirabayashi J, Oi T, Ohba T, Nogami K, Kikawada Y, Yamano M, Yui M, Fukuhara H (1997) Volcanic activity of Kusatsu-Shirane volcano, Gunma, and secular change in water quality of crater lake Yugama. Chikyukagaku 31:119–128 (In Japanese with English abstract)Google Scholar
  30. Prosser JT, Carr MJ (1987) Poás Volcano, Costa Rica. Geology of the summit region and spatial and temporal variations among the most recent lavas. J Volcanol Geothermal Res 33:131–146CrossRefGoogle Scholar
  31. Raccichini S, Bennett FD (1978) Nuevos aspectos de las erupciones del Volcán Poás. Rev Geogr Am Central 5–6:37–53 (In Spanish with English abstract)Google Scholar
  32. Raul Mora-Amador R, Rouwet D, González G, Vargas P, Ramírez C (Chapter 11) Volcanic hazard assessment of Poás (Costa Rica) based on the major historical eruptions of 1834, 1910 and 1953–1955. In: Tassi F, Mora-Amador R, Vaselli O (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg (Germany)Google Scholar
  33. Rounds EM (1980) A combined nonparametric approach to feature selection and binary decision tree design. Pattern Recon 12:313–317CrossRefGoogle Scholar
  34. Rouwet D, Morrissey M (2015) Mechanisms of crater lake breaching eruptions. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer-Heidelberg, pp 73–92Google Scholar
  35. Rouwet D, Ohba T (2015) Isotope fractionation and HCl partitioning during evaporative degassing from active crater lakes. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer-Heidelberg, pp 179–200Google Scholar
  36. Rouwet D, Sandri L, Marzocchi W, Gottsmann J, Selva J, Tonini R, Papale P (2014a) Recognizing and tracking volcanic hazards related to non-magmatic unrest: a review. J Appl Volcanol 3:17. Scholar
  37. Rouwet D, Tassi F, Mora-Amador R, Sandri L, Chiarini V (2014b) Past, present and future of volcanic lake monitoring. J Volcanol Geotherm Res 272:78–97. Scholar
  38. Rouwet D, Mora-Amador R, Ramírez CJ, González G, Inguaggiato S (2016) Dynamic fluid recycling at Laguna Caliente (Poás, Costa Rica) before and during the 2006-ongoing phreatic eruption cycle. In: Caudron C, Capaccioni B, Ohba T (eds) Geochemistry and geophysics of volcanic lakes. Geol Soc London, Special Publications 437.
  39. Rouwet D, Hidalgo S, Joseph EP, González-Ilama G (2017) Fluid geochemistry and volcanic unrest: dissolving the haze in time and space. In: Gottsmann J, Neuberg, J, Sheu, B (eds) Advances in volcanology. Springer-Heidelberg.
  40. Rowe GL, Brantley SL, Fernández M, Fernández JF, Borgia A, Barquero J (1992a) Fluid-volcano interaction in an active stratovolcano: the crater lake system of Poás volcano, Costa Rica. J Volcanol Geotherm Res 49:23–51CrossRefGoogle Scholar
  41. Rowe GL, Ohsawa S, Takano B, Brantley SL, Fernández JF, Barquero J (1992b) Using crater lake chemistry to predict volcanic activity at Poás Volcano, Costa Rica. Bull Volcanol 54:494–503CrossRefGoogle Scholar
  42. Rudín J, Alfaro A, Michaud G, Rudín A (1910) Gran erupcion de Ceniza del Volcán Poás. In: Vargas C (Comp) 1979, Volcán Poás Antologia (3a ed), UNED, San José, pp 75–82Google Scholar
  43. Rymer H, Locke CA, Borgia A, Martínez M, Brenes J, Van der Laat R, Williams-Jones G (2009) Long-term fluctuations in volcanic activity: implications for future environmental impact. Terra Nova 21:304–309Google Scholar
  44. Sandri L, Marzocchi W, Zaccarelli L (2004) A new perspective in identifying the precursory patterns of eruptions. Bull Volcanol 66:263–275. Scholar
  45. Shinohara H, Yoshikawa S, Miyabuchi Y (2015) Degassing activity of a volcanic crater lake: volcanic plume measurements at the Yudamari crater lake, Aso volcano, Japan. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer-Heidelberg, pp 201–218Google Scholar
  46. Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341CrossRefGoogle Scholar
  47. Takano B, Watanuki K (1990) Monitoring of volcanic eruptions at Yugama crater lake by aqueous sulfur oxyanions. J Volcanol Geotherm Res 40:71–87CrossRefGoogle Scholar
  48. Takano B, Saitoh H, Takano E (1994) Geochemical implications of subaqueous molten sulfur at Yugama crater lake, Kusatsu-Shirane volcano, Japan. Geochem J 28:199–216CrossRefGoogle Scholar
  49. Takano B, Kuno A, Oshawa S, Kawakami H (2008) Aqueous sulfur speciation possibly linked to subliming volcanic gas-water interaction during a quiescent period at Yugama crater lake, Kusatsu-Shirane volcano, Central Japan. J Volcanol Geotherm Res 178:145–168CrossRefGoogle Scholar
  50. Tamburello G, Agusto M, Caselli A, Tassi F, Vaselli O, Calabrese S, Rouwet D, Capaccioni B, Di Napoli R, Cardellini C, Chiodini G, Bitetto M, Brusca L, Bellomo S, Aiuppa A (2015) Intense magmatic degassing through the lake of Copahue volcano, 2013–2014. J Geophys Res 120.
  51. Tonini R, Sandri L, Rouwet D, Caudron C, Marzocchi W, Superman (2016) A new Bayesian Even Tree tool to track and quantify volcanic unrest and its application to Kiawah Ijen volcano. Geochem Geophys Geosyst.
  52. Truesdell AH, Hairlip JR, Armannsson H, D’Amore F (1989) Origin and transport of chloride in superheated geothermal steam. Geothermics 18:295–304CrossRefGoogle Scholar
  53. Varekamp JC, Pasternack GB, Rowe GL Jr (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97:161–179Google Scholar
  54. Vaselli O, Tassi F, Fischer TP, Tardani D, Fernandez Soto E, Martinez M, De Moor MJ, Bini G (Chapter 10) The last eighteen years (1998–2014) of fumarolic degassing at the Poás volcano (Costa Rica) and renewal activity. In: Tassi F, Mora-Amador R, Vaselli O (eds) Poás volcano (Costa Rica): the pulsing heart of Central America Volcanic Zone. Springer, Heidelberg (Germany)Google Scholar
  55. Vaselli O, Tassi F, Minissale G, Montegrossi G, Duarte E, Fernandez E, Bergamaschi F (2003) Fumarole migration and fluid geochemistry at Poás volcano (Costa Rica) from 1998 to 2001. In: Oppenheimer C, Pyle DM, Barkley J (eds) Volcanic degassing. Geol Soc London 213:247–262. Special PublicationsGoogle Scholar
  56. Werner C, Christenson BW, Hagerty M, Britten K (2006) Variability of volcanic gas emissions during a crater lake heating cycle at Ruapehu Volcano, New Zealand. J Volcanol Geotherm Res 154:291–302CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dmitri Rouwet
    • 1
    • 2
    Email author
  • Raúl Alberto Mora Amador
    • 3
    • 4
  • Laura Sandri
    • 1
  • Carlos Ramírez-Umaña
    • 3
    • 5
  • Gino González
    • 6
  • Giovannella Pecoraino
    • 2
  • Bruno Capaccioni
    • 7
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaSezione di BolognaItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaSezione di PalermoItaly
  3. 3.Escuela Centroamericana de Geología, Universidad de Costa RicaSan JoséCosta Rica
  4. 4.PREVENTEC, Universidad de Costa RicaSan JoséCosta Rica
  5. 5.Red Sismológica Nacional, Universidad de Costa RicaSan JoséCosta Rica
  6. 6.Volcanes Sin Fronteras-VSFSan JoséCosta Rica
  7. 7.BIGEA, Università degli Studi di BolognaBolognaItaly

Personalised recommendations