Advertisement

Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces

  • Bernard Bonnard
  • Olivier Cots
  • Lionel Jassionnesse
Part of the Springer INdAM Series book series (SINDAMS, volume 5)

Abstract

We combine geometric and numerical techniques - the Hampath code - to compute conjugate and cut loci on Riemannian surfaces using three test bed examples: ellipsoids of revolution, general ellipsoids, and metrics with singularities on S2 associated to spin dynamics.

Keywords

Return Mapping Gauss Curvature Jacobi Equation Conjugate Point Umbilical Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berger, M.: A panoramic view of Riemannian geometry. Springer-Verlag, Berlin Heidelberg New York (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bolsinov, A.V., Fomenko, A.T.: Integrable geodesic flows on two-dimensional surfaces. Monographs in Contemporary Mathematics, Consultants Bureau, New York (2000)Google Scholar
  3. 3.
    Bonnard, B., Caillau, J.-B., Sinclair, R., Tanaka, M.: Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(4), 1081–1098 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bonnard, B., Sugny, D.: Optimal Control with Applicationsin Space and Quantum Dynamics. Applied Mathematics 5, AIMS, Springfield (2012)Google Scholar
  5. 5.
    Caillau, J.-B., Cots, O., Gergaud, J.: Differentialcontinuationfor regularoptimal control problems. Optimization Methods and Software 27(2), 177–196 (2011)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Figalli, A., Rifford, L., Amer. J. Math. 134(1), C. Villani, Nearly round spheres look convex.: 109–139 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Itoh, J., Kiyohara, K.: The cut loci and the conjugate loci on ellipsoids. Manuscripta math., 114(2), 247–264 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Klingenberg, W.: Riemannian geometry. de Gruyter Studies in Mathematics, Walter de Gruyter & Co, Berlin (1982)Google Scholar
  9. 9.
    Myers, S.B.: Connections between differential geometry and topology I. Simply connected surfaces. Duke Math. J., 1(3) 376–391 (1935)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Poincaré, H: Sur les lignes géodésiquesdes surfaces convexes. Trans. Amer. Math. Soc. 6(3), 237–274 (1905)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Shiohama, K., Shioya, T., Tanaka, M.: The geometry of total curvature on complete open surfaces. Cambridge Tracts in Mathematics 159, Cambridge University Press, Cambridge (2003)Google Scholar
  12. 12.
    Sinclair,R., Tanaka, M.: Jacobi's last geometric statementextendsto a wider class of Liouville surfaces. Math. Comp., 75(256), 1779–1808 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Yuan, H.: Geometry, optimal control and quantum computing. Phd Thesis, Harvard (2006)Google Scholar
  14. 14.
    Yuan, H., Zeier, R., Khaneja, N.: Elliptic functions and efficient control of Ising spin chains with unequal coupling. Physical Review A77, 032340 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bernard Bonnard
    • 1
  • Olivier Cots
    • 2
  • Lionel Jassionnesse
    • 1
  1. 1.Institut de Mathématiques de BourgogneDijonFrance
  2. 2.INRIASophia AntipolisFrance

Personalised recommendations