Geometric Control Theory and Sub-Riemannian Geometry pp 53-72

Part of the Springer INdAM Series book series (SINDAMS, volume 5) | Cite as

Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces

  • Bernard Bonnard
  • Olivier Cots
  • Lionel Jassionnesse

Abstract

We combine geometric and numerical techniques - the Hampath code - to compute conjugate and cut loci on Riemannian surfaces using three test bed examples: ellipsoids of revolution, general ellipsoids, and metrics with singularities on S2 associated to spin dynamics.

References

  1. 1.
    Berger, M.: A panoramic view of Riemannian geometry. Springer-Verlag, Berlin Heidelberg New York (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Bolsinov, A.V., Fomenko, A.T.: Integrable geodesic flows on two-dimensional surfaces. Monographs in Contemporary Mathematics, Consultants Bureau, New York (2000)Google Scholar
  3. 3.
    Bonnard, B., Caillau, J.-B., Sinclair, R., Tanaka, M.: Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26(4), 1081–1098 (2009)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bonnard, B., Sugny, D.: Optimal Control with Applicationsin Space and Quantum Dynamics. Applied Mathematics 5, AIMS, Springfield (2012)Google Scholar
  5. 5.
    Caillau, J.-B., Cots, O., Gergaud, J.: Differentialcontinuationfor regularoptimal control problems. Optimization Methods and Software 27(2), 177–196 (2011)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Figalli, A., Rifford, L., Amer. J. Math. 134(1), C. Villani, Nearly round spheres look convex.: 109–139 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Itoh, J., Kiyohara, K.: The cut loci and the conjugate loci on ellipsoids. Manuscripta math., 114(2), 247–264 (2004)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Klingenberg, W.: Riemannian geometry. de Gruyter Studies in Mathematics, Walter de Gruyter & Co, Berlin (1982)Google Scholar
  9. 9.
    Myers, S.B.: Connections between differential geometry and topology I. Simply connected surfaces. Duke Math. J., 1(3) 376–391 (1935)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Poincaré, H: Sur les lignes géodésiquesdes surfaces convexes. Trans. Amer. Math. Soc. 6(3), 237–274 (1905)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Shiohama, K., Shioya, T., Tanaka, M.: The geometry of total curvature on complete open surfaces. Cambridge Tracts in Mathematics 159, Cambridge University Press, Cambridge (2003)Google Scholar
  12. 12.
    Sinclair,R., Tanaka, M.: Jacobi's last geometric statementextendsto a wider class of Liouville surfaces. Math. Comp., 75(256), 1779–1808 (2006)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Yuan, H.: Geometry, optimal control and quantum computing. Phd Thesis, Harvard (2006)Google Scholar
  14. 14.
    Yuan, H., Zeier, R., Khaneja, N.: Elliptic functions and efficient control of Ising spin chains with unequal coupling. Physical Review A77, 032340 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bernard Bonnard
    • 1
  • Olivier Cots
    • 2
  • Lionel Jassionnesse
    • 1
  1. 1.Institut de Mathématiques de BourgogneDijonFrance
  2. 2.INRIASophia AntipolisFrance

Personalised recommendations