Atlas Based Intensity Transformation of Brain MR Images

  • Snehashis Roy
  • Amod Jog
  • Aaron Carass
  • Jerry L. Prince
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8159)


Magnetic resonance imaging (MRI) is a noninvasive modality that has been widely used to image the structure of the human brain. Unlike reconstructed x-ray computed tomography images, MRI intensities do not possess a calibrated scale, and the images suffer from wide variability in intensity contrasts due to scanner calibration and pulse sequence variations. Most MR image processing tasks use intensities as the principal feature and therefore the results can vary widely according to the actual tissue intensity contrast. Since it is difficult to control the MR scanner acquisition protocols in multi-scanner cross-sectional studies, results achieved using image processing tools are often difficult to compare in such studies. Similar issues can happen in longitudinal studies, as scanners undergo upgrades or improvements in pulse sequences, leading to new imaging sequences. We propose a novel probabilistic model to transform image contrasts by matching patches of a subject image to a set of patches from a multi-contrast atlas. Although the transformed images are not for diagnostic purpose, the use of such contrast transforms is shown for two applications, (a) to improve segmentation consistency across scanners and pulse sequences, (b) to improve registration accuracy between multi-contrast image pairs by transforming the subject image to the contrast of the reference image and then registering the transformed subject image to the reference image. Contrary to previous intensity transformation methods, our technique does not need any information about landmarks, pulse sequence parameters or imaging equations. It is shown to provide more consistent segmentation across scanners compared to state-of-the-art methods.


magnetic resonance imaging (MRI) intensity transformation intensity normalization histogram matching brain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Resnick, S.M., Goldszal, A.F., Davatzikos, C., Golski, D., Kraut, M.A., Metter, E.J., Bryan, R.N., Zonderman, A.B.: One-year age changes in MRI brain volumes in older adults. Cerebral Cortex 10(5), 464–472 (2000)CrossRefGoogle Scholar
  2. 2.
    Clark, K.A., Woods, R.P., Rottenber, D.A., Toga, A.W., Mazziotta, J.C.: Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images. NeuroImage 29(1), 185–202 (2006)CrossRefGoogle Scholar
  3. 3.
    Fischl, B., Salat, D.H., van der Kouwe, A.J.W., Makris, N., Segonne, F., Quinn, B.T., Dale, A.M.: Sequence-independent segmentation of magnetic resonance images. NeuroImage 23(1), 69–84 (2004)CrossRefGoogle Scholar
  4. 4.
    Nyúl, L.G., Udupa, J.K.: On Standardizing the MR Image Intensity Scale. Mag. Reson. Med. 42(6), 1072–1081 (1999)CrossRefGoogle Scholar
  5. 5.
    Jäger, F., Hornegger, J.: Nonrigid Registration of Joint Histograms for Intensity Standardization in Magnetic Resonance Imaging. IEEE Trans. Med. Imag. 28(1), 137–150 (2009)CrossRefGoogle Scholar
  6. 6.
    Han, X., Fischl, B.: Atlas Renormalization for Improved Brain MR Image Segmentation Across Scanner Platforms. IEEE Trans. Med. Imag. 26(4), 479–486 (2007)CrossRefGoogle Scholar
  7. 7.
    Roy, S., Carass, A., Prince, J.: A compressed sensing approach for MR tissue contrast synthesis. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 371–383. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Conf. on Comp. Graphics and Interactive Techniques (SIGGRAPH), pp. 327–340 (2001)Google Scholar
  9. 9.
    Cao, T., Zach, C., Modla, S., Powell, D., Czymmek, K., Niethammer, M.: Registration for correlative microscopy using image analogies. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 296–306. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Myronenko, A., Song, X.: Point-Set Registration: Coherent Point Drift. IEEE Trans. Patt. Anal. and Machine Intell. 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  11. 11.
    Friedman, L., Stern, H., Brown, G.G., Mathalon, D.H., Turner, J., Glover, G.H., Gollub, R.L., Lauriello, J., Lim, K.O., Cannon, T., Greve, D.N., Bockholt, H.J., Belger, A., Mueller, B., Doty, M.J., He, J., Wells, W., Smyth, P., Pieper, S., Kim, S., Kubicki, M., Vangel, M., Potkin, S.G.: Test-Retest and Between-Site Reliability in a Multicenter fMRI Study. Human Brain Mapping 29(8), 958–972 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhang, J.: The mean field theory in em procedures for markov random fields. IEEE Trans. on Signal Proc. 40(10), 2570–2583 (1992)zbMATHCrossRefGoogle Scholar
  13. 13.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: IEEE Intl. Conf. on Comp. Vision, pp. 2272–2279 (2009)Google Scholar
  14. 14.
    Carass, A., Cuzzocreo, J., Wheeler, M.B., Bazin, P.L., Resnick, S.M., Prince, J.L.: Simple paradigm for extra-cerebral tissue removal: Algorithm and analysis. NeuroImage 56(4), 1982–1992 (2011)CrossRefGoogle Scholar
  15. 15.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A non-parametric method for automatic correction of intensity non-uniformity in MRI data. IEEE Trans. on Med. Imag. 17(1), 87–97 (1998)CrossRefGoogle Scholar
  16. 16.
    Bazin, P.L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans. on Medical Imaging 26(4), 487–496 (2007)CrossRefGoogle Scholar
  17. 17.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)CrossRefGoogle Scholar
  18. 18.
    Ardekani, S., Sinha, U.: Geometric distortion correction of high-resolution 3T diffusion tensor brain images. Mag. Reson. Med. 54(5), 1163–1171 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Snehashis Roy
    • 1
  • Amod Jog
    • 1
  • Aaron Carass
    • 1
  • Jerry L. Prince
    • 1
  1. 1.Image Analysis and Communication Laboratory, Department of Electrical and Computer EngineeringThe Johns Hopkins UniversityUSA

Personalised recommendations