Quantification and Analysis of Large Multimodal Clinical Image Studies: Application to Stroke

  • Ramesh Sridharan
  • Adrian V. Dalca
  • Kaitlin M. Fitzpatrick
  • Lisa Cloonan
  • Allison Kanakis
  • Ona Wu
  • Karen L. Furie
  • Jonathan Rosand
  • Natalia S. Rost
  • Polina Golland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8159)

Abstract

We present an analysis framework for large studies of multimodal clinical quality brain image collections. Processing and analysis of such datasets is challenging due to low resolution, poor contrast, misaligned images, and restricted field of view.We adapt existing registration and segmentation methods and build a computational pipeline for spatial normalization and feature extraction. The resulting aligned dataset enables clinically meaningful analysis of spatial distributions of relevant anatomical features and of their evolution with age and disease progression. We demonstrate the approach on a neuroimaging study of stroke with more than 800 patients. We show that by combining data from several modalities, we can automatically segment important biomarkers such as white matter hyperintensity and characterize pathology evolution in this heterogeneous cohort. Specifically, we examine two sub-populations with different dynamics of white matter hyperintensity changes as a function of patients’ age. Pipeline and analysis code is available at http://groups.csail.mit.edu/vision/medical-vision/stroke/.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Admiraal-Behloul, F., et al.: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage 28(3), 607–617 (2005)CrossRefGoogle Scholar
  2. 2.
    Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)CrossRefGoogle Scholar
  3. 3.
    Daly, E., et al.: Predicting conversion to Alzheimer disease using standardized clinical information. Archives of Neurology 57(5), 675 (2000)CrossRefGoogle Scholar
  4. 4.
    Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: IEEE International Conference on Computer Vision, pp. 1–7. IEEE (2007)Google Scholar
  5. 5.
    Hartkens, T., Rohr, K., Stiehl, H.S.: Evaluation of 3D operators for the detection of anatomical point landmarks in MR and CT images. Computer Vision and Image Understanding 86(2), 118–136 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Hinrichs, C., Singh, V., Xu, G., Johnson, S.C.: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55(2), 574–589 (2011)CrossRefGoogle Scholar
  7. 7.
    Hubert, H.B., Feinleib, M., McNamara, P.M., Castelli, W.P.: Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67(5), 968–977 (1983)CrossRefGoogle Scholar
  8. 8.
    Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3(1), 79–87 (1991)CrossRefGoogle Scholar
  9. 9.
    Johnson, K.A., et al.: Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 50(6), 1563–1571 (1998)CrossRefGoogle Scholar
  10. 10.
    Kabir, Y., Dojat, M., Scherrer, B., Garbay, C., Forbes, F.: Multimodal MRI segmentation of ischemic stroke lesions. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1595–1598. IEEE (2007)Google Scholar
  11. 11.
    Killiany, R.J., et al.: Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Annals of Neurology 47(4), 430–439 (2000)CrossRefGoogle Scholar
  12. 12.
    Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3), 786 (2009)CrossRefGoogle Scholar
  13. 13.
    Nadaraya, E.A.: On estimating regression. Theory of Probability & Its Applications 9(1), 141–142 (1964)CrossRefGoogle Scholar
  14. 14.
    Paulsen, J.S., et al.: Detection of Huntingtons disease decades before diagnosis: the Predict-HD study. Journal of Neurology, Neurosurgery & Psychiatry 79(8), 874–880 (2008)CrossRefGoogle Scholar
  15. 15.
    Quandt, R.E., Ramsey, J.B.: Estimating mixtures of normal distributions and switching regressions. Journal of the American Statistical Association 73(364), 730–738 (1978)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Regan, E.A., et al.: Genetic epidemiology of COPD (COPDGene) study design. COPD: Journal of Chronic Obstructive Pulmonary Disease 7(1), 32–43 (2011)CrossRefGoogle Scholar
  17. 17.
    Rost, N.S., et al.: White matter hyperintensity burden and susceptibility to cerebral ischemia. Stroke 41(12), 2807–2811 (2010)CrossRefGoogle Scholar
  18. 18.
    Rost, N.S., et al.: White matter hyperintensity volume is increased in small vessel stroke subtypes. Neurology 75(19), 1670–1677 (2010)CrossRefGoogle Scholar
  19. 19.
    Rueckert, D., Schnabel, J.A.: Medical image registration. Biomedical Image Processing, 131–154 (2011)Google Scholar
  20. 20.
    Sabuncu, M.R., Balci, S.K., Shenton, M.E., Golland, P.: Image-driven population analysis through mixture modeling. IEEE Transactions on Medical Imaging (TMI) 28(9), 1473–1487 (2009)CrossRefGoogle Scholar
  21. 21.
    Salton, C.J., et al.: Gender differences and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham Heart Study Offspring cohort. Journal of the American College of Cardiology 39(6), 1055–1060 (2002)CrossRefGoogle Scholar
  22. 22.
    Segonne, F., et al.: A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3), 1060–1075 (2004)CrossRefGoogle Scholar
  23. 23.
    Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging (1988)Google Scholar
  24. 24.
    Tukey, J.W.: Exploratory data analysis. Pearson (1977)Google Scholar
  25. 25.
    Tustison, N.J., Gee, J.C.: N4ITK: Nicks N3 ITK implementation for MRI bias field correction. Insight Journal (2009)Google Scholar
  26. 26.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N., et al.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1) (2008)Google Scholar
  27. 27.
    Viola, P., Wells III, W.M.: Alignment by maximization of mutual information. International Journal of Computer Vision 24(2), 137–154 (1997)CrossRefGoogle Scholar
  28. 28.
    Watson, G.S.: Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A, 359–372 (1964)Google Scholar
  29. 29.
    Weiner, M.W., et al.: The Alzheimers Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimer’s & Dementia 8(1), S1–S68 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ramesh Sridharan
    • 1
  • Adrian V. Dalca
    • 1
  • Kaitlin M. Fitzpatrick
    • 2
  • Lisa Cloonan
    • 2
  • Allison Kanakis
    • 2
  • Ona Wu
    • 2
  • Karen L. Furie
    • 3
  • Jonathan Rosand
    • 2
  • Natalia S. Rost
    • 2
  • Polina Golland
    • 1
  1. 1.Computer Science and Artificial Intelligence LabMITUSA
  2. 2.Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolUSA
  3. 3.Department of NeurologyRhode Island Hospital, Alpert Medical School of Brown UniversityUSA

Personalised recommendations