A Family of Fast Spherical Registration Algorithms for Cortical Shapes

  • Boris A. Gutman
  • Sarah K. Madsen
  • Arthur W. Toga
  • Paul M. Thompson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8159)

Abstract

We introduce a family of fast spherical registration algorithms: a spherical fluid model and several modifications of the spherical demons algorithm introduced in [1]. Our algorithms are based on fast convolution of tangential spherical vector fields in the spectral domain. Using the vector harmonic representation of spherical fields, we derive a more principled approach for kernel smoothing via Mercer’s theorem and the diffusion equation. This is a non-trivial extension of scalar spherical convolution, as the vector harmonics do not generalize directly from scalar harmonics on the sphere, as in the Euclidean case. The fluid algorithm is optimized in the Eulerian frame, leading to a very efficient optimization. Several new adaptations of the demons algorithm are presented, including compositive and diffeomorphic demons, as well as fluid-like and diffusion-like regularization. The resulting algorithms are all significantly faster than [1], while also retaining greater flexibility. Our algorithms are validated and compared using cortical surface models.

Keywords

Shape Registration Spherical Mapping Diffeomorphic Demons Fluid Registration Vector Spherical Harmonics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yeo, B.T.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration. IEEE T. Med. Imaging 29, 650–668 (2010)CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Chan, T.F., Toga, A.W., Thompson, P.M.: Multivariate tensor-based brain anatomical surface morphometry via holomorphic one-forms. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 337–344. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Shi, Y., Morra, J.H., Thompson, P.M., Toga, A.W.: Inverse-consistent surface mapping with Laplace-Beltrami eigen-features. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 467–478. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Glaunes, J., Vaillant, M., Miller, M.I.: Landmark matching via large deformation diffeomorphisms on the sphere. Journal of Mathematical Imaging and Vision 20, 179–200 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Shi, J., Thompson, P.M., Gutman, B., Wang, Y.: Surface fluid registration of conformal representation: Application to detect disease burden and genetic influence on hippocampus. Neuroimage 78, 111–134 (2013)CrossRefGoogle Scholar
  6. 6.
    Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 5, 1435–1447 (1996)CrossRefGoogle Scholar
  7. 7.
    Thompson, P.M., Woods, R.P., Mega, M.S., Toga, A.W.: Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Human Brain Mapping 9, 81–92 (2000)CrossRefGoogle Scholar
  8. 8.
    Lepore, N., Leow, A., Thompson, P.: Landmark matching on the sphere using distance functions. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 450–453 (2006)Google Scholar
  9. 9.
    Miller, M.I., Younes, L.: Group Actions, Homeomorphisms, and Matching: A General Framework. Int. J. Comput. Vision 41, 61–84 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Tosun, D., Prince, J.L.: Cortical surface alignment using geometry driven multispectral optical flow. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 480–492. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Fischl, B., Sereno, M., Tootell, R., Dale, A.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8, 272–284 (1999)CrossRefGoogle Scholar
  12. 12.
    Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2, 243–260 (1998)CrossRefGoogle Scholar
  13. 13.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. Neuroimage 45, S61–S72 (2009)Google Scholar
  14. 14.
    D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical Image Analysis 7, 565–575 (2003)CrossRefGoogle Scholar
  15. 15.
    Bro-Nielsen, M., Gramkow, C.: Fast Fluid Registration of Medical Images. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 267–276. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Kostelec, P.J., Maslen, D.K., Healy, D.M., Rockmore, D.N.: Computational harmonic analysis for tensor fields on the two-sphere. J. Comput. Phys. 162, 514–535 (2000)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Courant, R., Hilbert, D.: Methods of mathematical physics. Interscience Publishers, New York (1953)Google Scholar
  18. 18.
    Chung, M.K., Hartley, R., Dalton, K.M., Davidson, R.J.: Encoding Cortical Surface by Spherical Harmonics. Stat. Sinica 18, 1269–1291 (2008)MathSciNetMATHGoogle Scholar
  19. 19.
    Cachier, P., Ayache, N.: Isotropic Energies, Filters and Splines for Vector Field Regularization. J. Math. Imaging Vis. 20, 251–265 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Healy, D.M., Rockmore, D.N., Kostelec, P.J., Moore, S.: FFTs for the 2-sphere-improvements and variations. J. Fourier Anal. Appl. 9, 341–385 (2003)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Friedel, I., Schroeder, P., Desbrun, M.: Unconstrained spherical parameterization. In: ACM SIGGRAPH 2005 Sketches, p. 134. ACM, Los Angeles (2005)CrossRefGoogle Scholar
  22. 22.
    Gutman, B., Wang, Y., Lui, L.M., Chan, T.F., Thompson, P.M., Toga, A.W.: Shape Registration with Spherical Cross Correlation. In: MICCAI Workshop on Mathematical Foundations in Computational Anatomy, MFCA 2008 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Boris A. Gutman
    • 1
  • Sarah K. Madsen
    • 1
  • Arthur W. Toga
    • 1
  • Paul M. Thompson
    • 1
  1. 1.Imaging Genetics Center, Laboratory of Neuro ImagingUniversity of CaliforniaLos AngelesUSA

Personalised recommendations