A Framework to Compare Tractography Algorithms Based on Their Performance in Predicting Functional Networks

  • Fani Deligianni
  • Chris A. Clark
  • Jonathan D. Clayden
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8159)


Understanding the link between brain function and structure is of paramount importance in neuroimaging and psychology. In practice, inaccuracies in recovering brain networks may confound neurophysiological factors and reduce the sensitivity in detecting statistically robust links. Hence, reproducibility and inter-subject variability of tractography approaches is currently under extensive investigation. However, a reproducible network is not necessarily more accurate. Here, we build a statistical framework to compare the performance of local and global tractograpy in predicting functional brain networks. We use a model selection framework based on sparse canonical correlation analysis and an appropriate metric to evaluate the similarity between the predicted and the observed functional networks. We demonstrate compelling evidence that global tractography outperforms local tractography in a cohort of healthy adults.


structural connectivity global tractography prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van den Heuvel, M.P., et al.: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping 30(10), 3127–3141 (2009)CrossRefGoogle Scholar
  2. 2.
    Fillard, P., et al.: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56(1), 220–234 (2011)CrossRefGoogle Scholar
  3. 3.
    Behrens, T., et al.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnet. Reson. Med. 50, 1077–1088 (2003)CrossRefGoogle Scholar
  4. 4.
    Reisert, M., et al.: Global fiber reconstruction becomes practical. NeuroImage 54(2), 955–962 (2011)CrossRefGoogle Scholar
  5. 5.
    Li, L., et al.: Quantitative assessment of a framework for creating anatomical brain networks via global tractography. NeuroImage 61(4), 1017–1030 (2012)CrossRefGoogle Scholar
  6. 6.
    Witten, D.M., Tibshirani, R.J.: Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol. 8, Article 28 (2009)Google Scholar
  7. 7.
    Vounou, M., Nichols, T.E., Montana, G.: Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach. NeuroImage 53(3), 1147–1159 (2010)CrossRefGoogle Scholar
  8. 8.
    Krämer, N., Schäfer, J., Boulesteix, A.-L.: Regularized estimation of large-scale gene association networks using graphical gaussian models. BMC Bioinformatics 10, 384 (2009)CrossRefGoogle Scholar
  9. 9.
    Förstner, W., Moonen, B.: A metric for covariance matrices. Qua Vadis Geodesia, 113 (1999)Google Scholar
  10. 10.
    Mitteroecker, P., Bookstein, F.: The ontogenetic trajectory of the phenotypic covariance matrix, with examples from craniofacial shape in rats and humans. Evolution 63(3), 727–737 (2009)CrossRefGoogle Scholar
  11. 11.
    Deligianni, F., Varoquaux, G., Thirion, B., Robinson, E., Sharp, D.J., Edwards, A.D., Rueckert, D.: A probabilistic framework to infer brain functional connectivity from anatomical connections. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 296–307. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Deligianni, F., et al.: Inference of functional connectivity from structural brain connectivity. In: ISBI, p. 1113 (2010)Google Scholar
  13. 13.
    Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)CrossRefGoogle Scholar
  14. 14.
    Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)CrossRefGoogle Scholar
  15. 15.
    Smith, S., et al.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, 208–219 (2004)CrossRefGoogle Scholar
  16. 16.
    Clayden, J., et al.: Tractor: Magnetic resonance imaging and tractography with R. Journal of Statistical Software 44(8), 1–18 (2011)Google Scholar
  17. 17.
    Sporns, O., Tononi, G., Edelman, G.: Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb. Cortex 10, 127–141 (2000)CrossRefGoogle Scholar
  18. 18.
    Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88, 365–411 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4, Article 32 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Fani Deligianni
    • 1
  • Chris A. Clark
    • 1
  • Jonathan D. Clayden
    • 1
  1. 1.Imaging and Biophysics Unit, Institute of Child HealthUniversity College LondonLondonUnited Kingdom

Personalised recommendations