Registration of Brain CT Images to an MRI Template for the Purpose of Lesion-Symptom Mapping

  • Hugo J. Kuijf
  • J. Matthijs Biesbroek
  • Max A. Viergever
  • Geert Jan Biessels
  • Koen L. Vincken
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8159)


Lesion-symptom mapping is a valuable tool for exploring the relation between brain structure and function. In order to perform lesion-symptom mapping, lesion delineations made on different brain CT images need to be transformed to a standardized coordinate system. The preferred choice for this is the MNI152 template image that is based on T1-weighted MR images. This requires a multi-modal registration procedure to transform lesion delineations for each CT image to the MNI152 template image. A two-step registration procedure was implemented, using lesion-masking and contrast stretching to correctly align the soft tissue of the CT image to the MNI152 template image. The results were used to transform the lesion delineations to the template. The quality of the registration was assessed by an expert human observer. Of the 86 CT images, the registration was highly successful in 71 cases (83%). Slight manual adjustments of the lesion delineations in the standard coordinate system were required to make unsuccessful cases suitable for a lesion-symptom mapping study.


Registration Procedure Deformable Registration Joint Histogram Unsuccessful Case Tentorium Cerebelli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorelick, P.B., Scuteri, A., Black, S.E., DeCarli, C., Greenberg, S.M., Iadecola, C., Launer, L.J., Laurent, S., Lopez, O.L., Nyenhuis, D., Petersen, R.C., Schneider, J.A., Tzourio, C., Arnett, D.K., Bennett, D.A., Chui, H.C., Higashida, R.T., Lindquist, R., Nilsson, P.M., Roman, G.C., Sellke, F.W., Seshadri, S.: Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association. Stroke 42(9), 2672–2713 (2011)CrossRefGoogle Scholar
  2. 2.
    Rorden, C., Karnath, H.O.: Using human brain lesions to infer function: a relic from a past era in the fmri age? Nature Reviews Neuroscience 5(10), 812–819 (2004)CrossRefGoogle Scholar
  3. 3.
    Biesbroek, J.M., Kuijf, H.J., van der Graaf, Y., Vincken, K.L., Postma, A., Mali, W.P.T.M., Biessels, G.J., Geerlings, M.I., on behalf of the SMART Study Group: Association between subcortical vascular lesion location and cognition: A voxel-based and tract-based lesion-symptom mapping study. The smart-mr study. PLoS ONE 8(4), e60541 (2013)Google Scholar
  4. 4.
    Rorden, C., Karnath, H.O., Bonilha, L.: Improving lesion-symptom mapping. Journal of Cognitive Neuroscience 19(7), 1081–1088 (2007)CrossRefGoogle Scholar
  5. 5.
    Fonov, V., Evans, A., McKinstry, R., Almli, C., Collins, D.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47(supp.1) (2009), S102; Organization for Human Brain Mapping 2009 Annual MeetingGoogle Scholar
  6. 6.
    Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1), 313–327 (2011)CrossRefGoogle Scholar
  7. 7.
    Evans, A.C., Janke, A.L., Collins, D.L., Baillet, S.: Brain templates and atlases. NeuroImage 62(2), 911–922 (2012)CrossRefGoogle Scholar
  8. 8.
    Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)CrossRefGoogle Scholar
  9. 9.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22(8), 986–1004 (2003)CrossRefGoogle Scholar
  10. 10.
    Gao, A., Chen, M., Hu, Q.: Non-rigid registration between brain ct images and mri brain atlas by combining grayscale information, point correspondence on the midsaggital plane and brain surface matching. In: Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering. Advances in Intelligent Systems Research, pp. 222–225 (2013)Google Scholar
  11. 11.
    Ritter, F., Boskamp, T., Homeyer, A., Laue, H., Schwier, M., Link, F., Peitgen, H.O.: Medical image analysis: A visual approach. IEEE Pulse 2(6), 60–70 (2011)CrossRefGoogle Scholar
  12. 12.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: A toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  13. 13.
    Thevenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing 9(12), 2083–2099 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Klein, S., Pluim, J.P.W., Staring, M., Viergever, M.A.: Adaptive stochastic gradient descent optimisation for image registration. International Journal of Computer Vision 81(3), 227–239 (2009)CrossRefGoogle Scholar
  15. 15.
    Klein, S., Staring, M.: elastix: the manual, 4.6 edn. (2012)Google Scholar
  16. 16.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast mr images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  17. 17.
    Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Processing Magazine 16(6), 22–38 (1999)CrossRefGoogle Scholar
  18. 18.
    Klein, S., Staring, M., Pluim, J.P.W.: Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines. IEEE Transactions on Image Processing 16(12), 2879–2890 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Brett, M., Leff, A.P., Rorden, C., Ashburner, J.: Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage 14(2), 486–500 (2001)CrossRefGoogle Scholar
  20. 20.
    Kuijf, H.J., Viergever, M.A., Vincken, K.L.: Automatic extraction of the curved midsagittal brain surface on MR images. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 225–232. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Hugo J. Kuijf
    • 1
  • J. Matthijs Biesbroek
    • 1
  • Max A. Viergever
    • 1
  • Geert Jan Biessels
    • 1
  • Koen L. Vincken
    • 1
  1. 1.University Medical Center UtrechtThe Netherlands

Personalised recommendations