On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method

  • Feng Chen
  • Jan S. HesthavenEmail author
  • Xueyu Zhu
Part of the MS&A - Modeling, Simulation and Applications book series (MS&A, volume 9)


We propose a modified parallel-in-time — parareal — multi-level time integration method that, in contrast to previously proposed methods, employs a coarse solver based on a reduced model, built from the information obtained from the fine solver at each iteration. This approach is demonstrated to offer two substantial advantages: it accelerates convergence of the original parareal method for similar problems and the reduced basis stabilizes the parareal method for purely advective problems where instabilities are known to arise. When combined with empirical interpolation methods (EIM), we develop this approach to solve both linear and nonlinear problems and highlight the minimal changes required to utilize this algorithm to accelerate existing implementations. We illustrate the advantages through algorithmic design, through analysis of stability, convergence, and computational complexity, and through several numerical examples.


Singular Value Decomposition Proper Orthogonal Decomposition Parareal Method Coarse Solver Fine Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Baffico, L., Bernard, S., Maday, Y., Turinici, G., Zérah, G.: Parallel-in-time moleculardynamics simulations. Physical Review E 66(5) (2002)Google Scholar
  3. 3.
    Bal, G.: On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations. In: Domain decomposition methods in science and engineering, pp. 425–432. Lecture Notes in Computational Science and Engineering, Vol. 40. Springer-Verlag, Berlin Heidelberg (2005)Google Scholar
  4. 4.
    Barrault, D., Maday, Y., Nguyen, N., Patera, A.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339(9), 667 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Cavar, D., Meyer, K.E.: LES of turbulent jet in cross flow: Part 2 POD analysis and identification of coherent structures. Inter. J. Heat Fluid Flow 36, 35–46 (2012)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, A.: An introduction to the proper orthogonal decomposition. Current Science-Bangalore 78(7), 808 (2000)Google Scholar
  7. 7.
    Chaturantabut, S., Sorensen, D.: Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing 32(5), 2737 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dai, X., Maday, Y.: Stable parareal in time method for first and second order hyperbolic system. arXiv preprint arXiv:1201.1064 (2012)Google Scholar
  9. 9.
    Emmerich, E.: Discrete versions of Gronwall’s lemma and their application to the numerical analysis of parabolic problems, 1st ed.. TU, Fachbereich 3, Berlin (1999)Google Scholar
  10. 10.
    Farhat, C.: Cortial, J.: Dastillung, C., Bavestrello, H.: Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses.. International journal for numerical methods in engineering 67(5), 697 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gander, M., Petcu, M.: in ESAIM: Analysis of a Krylov subspace enhanced parareal algorithm for linear problems. Proceedings, vol. 25, pp. 114–129 (2008)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Gander, M., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM Journal on Scientific Computing 29(2), 556 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    He, L.: The reduced basis technique as a coarse solver for parareal in time simulations. J. Comput. Math 28, 676 (2010)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge, UK (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer-Verlag, New York (2008)CrossRefGoogle Scholar
  16. 16.
    Lions, J., Maday, Y., Turinici, G.: A “parareal” in time discretization of pde’s. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(7), 661 (2001)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Maday, Y., Turinici, G.: Parallel in time algorithms for quantum control: Parareal time discretization scheme. International journal of quantum chemistry 93(3), 223 (2003)CrossRefGoogle Scholar
  18. 18.
    Maday, Y.: Parareal in time algorithm for kinetic systems based on model reduction. High-dimensional partial differential equations in science and engineering 41, 183Google Scholar
  19. 19.
    Nielsen, A.S.: Feasibility study of the parareal algorithm. MSc thesis, Technical University of Denmark (2012)Google Scholar
  20. 20.
    Rozza, G., Huynh, D., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives of Computational Methods in Engineering 15(3), 229 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acousticadvection system. Computers & Fluids 59, 72 (2012)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Staff, G.; Rønquist, E.: Stability of the parareal algorithm. Domain decomposition methods in science and engineering pp. 449–456 (2005)Google Scholar
  23. 23.
    Skvortsov, L.M.: Diagonally implicit Runge-Kutta methods for stiff problems. Computational Mathematics and Mathematical Physics 46(12), 2110 (2006). DOI 10.1134/S0965542506120098. Scholar
  24. 24.
    Verlet, L.: Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Physical review 159(1), 98 (1967)CrossRefGoogle Scholar
  25. 25.
    Xu, Y., Shu, C.: Local discontinuous galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations. Comp. Methods Appl. Mech. Engin. 195(25), 3430–3447 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Yan, J., Shu, C.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Num. Anal. 40(2), 769–791 (2002)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Brown UniversityProvidenceUSA
  2. 2.EPFL-SB-MATHICSEÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations