Application of the Discrete Empirical Interpolation Method to Reduced Order Modeling of Nonlinear and Parametric Systems

  • Harbir Antil
  • Matthias Heinkenschloss
  • Danny C. Sorensen


Projection based methods lead to reduced order models (ROMs) with dramatically reduced numbers of equations and unknowns. However, for nonlinear or parametrically varying problems the cost of evaluating these ROMs still depends on the size of the full order model and therefore is still expensive. The Discrete Empirical Interpolation Method (DEIM) further approximates the nonlinearity in the projection based ROM. The resulting DEIM ROM nonlinearity depends only on a few components of the original nonlinearity. If each component of the original nonlinearity depends only on a few components of the argument, the resulting DEIM ROM can be evaluated efficiently at a cost that is independent of the size of the original problem. For systems obtained from finite difference approximations, the ith component of the original nonlinearity often depends only on the ith component of the argument. This is different for systems obtained using finite element methods, where the dependence is determined by the mesh and by the polynomial degree of the finite element subspaces. This paper describes two approaches of applying DEIM in the finite element context, one applied to the assembled and the other to the unassembled form of the nonlinearity. We carefully examine how the DEIM is applied in each case, and the substantial efficiency gains obtained by the DEIM. In addition, we demonstrate how to apply DEIM to obtain ROMs for a class of parameterized system that arises, e.g., in shape optimization. The evaluations of the DEIM ROMs are substantially faster than those of the standard projection based ROMs. Additional gains are obtained with the DEIM ROMs when one has to compute derivatives of the model with respect to the parameter.


  1. 1.
    Antoulas, A.C.: Approximation of large-scale dynamical systems, Advances in Design and Control, vol. 6. Society for Industrial and Applied Mathematics, Philadelphia, PA (2005)Google Scholar
  2. 2.
    Barrault, M., Maday, Y., Nguyen, N.D., Patera, A.T.:An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339(9), 667–672 (2004)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Becker, R., Braack, M., Vexler, B.: Numerical parameter estimation for chemical models in multidimensional reactive flows. Combust. Theory Modelling 8, 6 (2004)MathSciNetGoogle Scholar
  4. 4.
    Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech. Engng. 32, 199–259 (1982)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Buffa, A., Maday, Y., Patera, A.T., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM Math. Model. Numer. Anal. 46(3), 595–603 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing 32(5), 2737–2764 (2010)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Chaturantabut, S., Sorensen, D.C.: Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media. Math. Comput. Model. Dyn. Syst. 17(4), 337–353 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Dedden, R.J.: Model order reduction using the discrete empirical interpolation method. Master’s thesis, Technical University Delft, Netherlands, 2012. Available from (accessed Dec. 31, 2012)Google Scholar
  10. 10.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  11. 11.
    Galbally, D., Fidkowski, K., Willcox, K., Ghattas, O.: Nonlinear model reduction for uncertainty quantification in large-scale inverse problems. Internat. J. Numer. Methods Engrg. 81(12), 1581–1603 (2010)MATHMathSciNetGoogle Scholar
  12. 12.
    Galdi, G.P., Simader, C.G., Sohr, H.: On the Stokes problem in Lipschitz domains. Ann. Mat. Pura Appl. (4) 167, 147–163 (1994)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Theory and algorithms, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin Heidelberg (1986)Google Scholar
  14. 14.
    Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. M2AN Math. Model. Numer. Anal. 41(3), 575–605 (2007)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. M2AN Math. Model. Numer. Anal. 39(1), 157–181 (2005)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    He, J.-W., Glowinski, R., Metcalfe, R., Nordlander, A., Periaux, J.: Active control and drag optimization for flow past a circular cylinder. I. oscillatory cylinder rotation. Journal of Computational Physics 163, 83–117 (2000)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hinze, M., Kunkel, M.: Discrete empirical interpolation in pod model order reduction of drift-diffusion equations in electrical networks. In: Michielsen, B., Poirier, J.-R. (eds.) Scientific Computing in Electrical Engineering SCEE 2010, Mathematics in Industry, pp. 423–431. Springer-Verlag, Berlin Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with Partial Differential Equations. of Mathematical Modelling, Theory and Applications, vol. 23. Springer-Verlag, Berlin Heidelberg New York (2009)Google Scholar
  19. 19.
    Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: Error estimates and suboptimal control. In: Benner, P., Mehrmann, V., Sorensen, D. C. (eds.) Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol. 45, pp. 261–306. Springer-Verlag, Berlin Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. International Journal for Numerical Methods in Fluids 44(7), 777–788 (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Lall, S., Marsden, J.E., Glavaški, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Internat. J. Robust Nonlinear Control 12(6), 519–535 (2002)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Lass, O., Volkwein, S.: POD Galerkin schemes for nonlinear elliptic-parabolic systems. Konstanzer Schriften in Mathematik No. 301, FB Mathematik & Statistik, Universität Konstanz, D-78457 Konstanz, Germany, 2012. To appear in SIAM J. Scientific ComputingGoogle Scholar
  23. 23.
    Lions, P.-L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24(4), 441–467 (1982)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Patera, A.T., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. MIT Pappalardo Graduate Monographs in Mechanical Engineering. Cambridge, MA (2007). Available from Scholar
  25. 25.
    Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin Heidelberg New York (1994)MATHGoogle Scholar
  26. 26.
    Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Computational Mathematics, Vol. 24, 2nd ed. Springer-Verlag, Berlin Heidelberg (2008)Google Scholar
  27. 27.
    Roubíček, T.: Nonlinear partial differential equations with applications, volume 153 of International Series of Numerical Mathematics. Birkhäuser, Basel (2005)Google Scholar
  28. 28.
    Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. on Bifurcation and Chaos 15(3), 997–1013 (2005)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Rozza, G., Veroy, K.: On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg. 196(7), 1244–1260 (2007)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Rump, S.M.: INTLAB — INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999). Scholar
  32. 32.
    Stynes, M.: Steady-state convection-diffusion problems. In: Iserles, A. (ed.) Acta Numerica 2005, pp. 445–508. Cambridge University Press, Cambridge, London, New York (2005)Google Scholar
  33. 33.
    Tiso, P., Dedden, R.J., Rixen, D.J.: DEIM for nonlinear structural dynamics model order reduction, 2012. Talk presented at the 10th World Congress on Computational Mechanics, Sao Paulo, Brazil (8–13 July 2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Harbir Antil
    • 1
  • Matthias Heinkenschloss
    • 2
  • Danny C. Sorensen
    • 2
  1. 1.Department of Mathematical SciencesGeorge Mason UniversityFairfaxUSA
  2. 2.Department of Computational and Applied MathematicsRice UniversityHoustonUSA

Personalised recommendations