Characteristic and Fluctuation of Multi-fin FinFETs

Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 17)

Abstract

As the gate length of a metal oxide semiconductor field effect transistor (MOSFET) decreases, vertical channel transistors, such as the fin-typed field effect transistors (FinFETs) have attracted much attention because of their promising characteristics. In this chapter, we explore the electrical characteristics of 16 nm multi-fin FinFETs with different fin aspect ratios [AR = fin height (H fin)/fin width (W fin)]. The 16-nm multi-fin FinFET device and circuits’ characteristics are simulated by solving a set of 3D quantum-mechanically corrected transport equations coupling with circuit nodal equations self-consistently. Device’s electrical characteristics and their fluctuation are discussed with respect to the AR varying from 0.5 to 2 including the number of silicon channel fins. Dynamic and transfer characteristics of static random access memory, inverter, and analog circuits using single-/multiple-fin FinFETs are further discussed, respectively.

Keywords

Gate Length Current Mirror Kinetic Monte Carlo Static Random Access Memory Gate Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported in part by the Taiwan National Science Council (NSC), under Contracts NSC-101-2221-E-009-092, NSC-100-2221-E-009-018, and NSC-99-2221-E-009-175, and by Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan, under a 2011-2013 grant.

References

  1. 1.
    James, D.: Intel Ivy Bridge unveiled – the first commercial tri-gate, high-k, metal-gate CPU. In: IEEE international custom integrated circuits conference, pp. 1–4 (2012)Google Scholar
  2. 2.
    Damaraju, S., George, V., Jahagirdar, S., Khondker, Milstrey, T.R., Sarkar, S., Siers, S., Stolero, I., Subbiah, A.: A 22nm IA multi-CPU and GPU system-on-chip. In: IEEE international solid-state circuits conference digest of technical papers, pp. 56–57 (2012)Google Scholar
  3. 3.
    Auth, C.: 22-nm fully-depleted tri-gate CMOS transistors. In: IEEE international custom integrated circuits conference, pp. 1–6 (2012)Google Scholar
  4. 4.
    Karl, E., Yih, W., Ng, Y.-G., Guo, Z., Hamzaoglu, F., Bhattacharya, U., Zhang, K., Mistry, K., Bohr, M.: A 4.6 GHZ 162Mb SRAM design in 22nm tri-gate CMOS technology with integrated active VMIN-enhancing assist circuitry. In: IEEE international solid-state circuits conference digest of technical papers, pp. 230–232 (2012)Google Scholar
  5. 5.
    Kulkarni, J., Geuskens, B., Karnik, T., Khellah, M., Tschanz, J., De, V.: Capacitive-coupling wordline boosting with self-induced VCC collapse for write VMIN reduction in 22-nm 8T SRAM. In: IEEE international solid-state circuits conference digest of technical papers, pp 234–236 (2012)Google Scholar
  6. 6.
    Seifert, N., Gill, B., Jahinuzzaman, S., Basile, J., Ambrose, V., Shi, Q., Allmon, R., Bramnik, A.: Soft error susceptibilities of 22 nm tri-gate devices. IEEE Trans. Nucl. Sci. 59, 2666–2673 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Auth, C., Allen, C., Blattner, A., Bergstrom, D., Brazier, M., Bost, M., Buehler, M., Chikarmane, V., Ghani, T., Glassman, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., Hentges, P., Heussner, R., Hicks, J., Ingerly, D., Jain, P., Jaloviar, S., James, R., Jones, D., Jopling, J., Joshi, S., Kenyon, C., Liu, H., McFadden, R., McIntyre, B., Neirynck, J., Parker, C., Pipes, L., Post, I., Pradhan, S., Prince, M., Ramey, S., Reynolds, T., Roesler,J., Sandford, J., Seiple, J., Smith, P., Thomas, C., Towner, D., Troeger, T., Weber, C., Yashar, P., Zawadzki, K., Mistry, K.: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: Symposium on VLSI technology. Digest of technical papers, pp. 131–132 (2012)Google Scholar
  8. 8.
    Kuhn, K.J., Giles, M.D., Becher, D., Kolar, P., Kornfeld, A., Kotlyar, R., Ma, S., Maheshwari, T.A., Mudanai, S.: Process technology variation. IEEE Trans. Electron Dev. 58, 2197–2208 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Li, Y., Hwang, C.-H., Li, T.-Y.: Random-dopant-induced variability in nano-CMOS devices and digital circuits. IEEE Trans. Electron Dev. 56, 1588–1597 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Li, Y., Hwang, C.-H., Li, T.-Y., Han, M.-H.: Process-variation effect, metal-gate work-function fluctuation, and random-dopant fluctuation in emerging CMOS technologies. IEEE Trans. Electron Dev. 57, 437–447 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Baravelli, E., Jurczak, M., Speciale, N., De Meyer, K., Dixit, A.: Impact of LER and random dopant fluctuations on FinFET matching performance. IEEE Trans. Nanotechnol. 7, 291–298 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Weber, O., Faynot, O., Andrieu, F., Buj-Dufournet, C., Allain, F., Scheiblin, P., Foucher, J., Daval, N., Lafond, D., Tosti, L., Brevard, L., Rozeau, O., Fenouillet-Beranger, C., Marin, M., Boeuf, F., Delprat, D., Bourdelle, K., Nguyen B.Y., Deleonibus, S.: High immunity to threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical understanding. In: International electron device meeting. Technical digest, pp. 245–248 (2008)Google Scholar
  13. 13.
    Li, Y., Hwang, C.-H., Han, M.-H.: Simulation of characteristic variation in 16 nm gate FinFET devices due to intrinsic parameter fluctuations. Nanotechnology 21, 095203 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Li, Y., Hwang, C.-H., Li, T.-Y.: Discrete-dopant-induced timing fluctuation and suppression in nanoscale CMOS circuit. IEEE Trans. Circ. Syst. II Express Briefs 56, 379–383 (2009)CrossRefGoogle Scholar
  15. 15.
    Ancona, M.G., Tiersten, H.F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B 35, 7959–7965 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    Odanaka, S.: Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures. IEEE Trans. Comput. Aided Des. Integr. Circ. Sys. 23, 837–842 (2004)CrossRefGoogle Scholar
  17. 17.
    Tang, T.-W., Wang, X., Li, Y.: Discretization scheme for the density-gradient equation and effect of boundary conditions. J. Comput. Electron. 1, 389–393 (2002)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Sze, S.M., Chao, T.S.: A practical implementation of parallel dynamic load balancing for adaptive computing in VLSI device simulation. Eng. Comput. 18, 124–137 (2002)CrossRefGoogle Scholar
  19. 19.
    Cheng, B., Roy, S., Asenov, A.: Impact of intrinsic parameter fluctuations on SRAM cell design. In: Proceedings of international solid-state and integrated circuit technology conference, pp. 1290–1292 (2006)Google Scholar
  20. 20.
    Cheng, B., Roy, S., Asenov, A.: The scalability of 8T-SRAM cells under the influence of intrinsic parameter fluctuations. In: Proceedings of European solid-state circuits conference, pp. 93–96 (2007)Google Scholar
  21. 21.
    Cheng, B., Roy, S., Asenov, A.: CMOS 6T SRAM cell design subject to “atomistic” fluctuations. Solid State Electron. 51, 565–571 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Bhavnagarwala, A.J., Tang, X., Meindl, J.D.: The impact of intrinsic device fluctuations on CMOS SRAM cell stability. IEEE J. Solid State Circ. 36, 658–665 (2001)CrossRefGoogle Scholar
  23. 23.
    Hill, C.: Definitions of noise margin in logic systems. Mullard Tech. Commun. 89, 239–245 (1967)Google Scholar
  24. 24.
    Li, Y., Liu, J.-L., Chao, T.-S., Sze, S.M.: A new parallel adaptive finite volume method for the numerical simulation of semiconductor devices. Comput. Phys. Commun. 142, 285–289 (2001)ADSCrossRefMATHGoogle Scholar
  25. 25.
    Kim, S.M., Yoon, E.J., Jo, H.J., Li, M., Oh, C.W., Lee, S.Y., Yeo, K.H., Kim, M.S., Kim, S.H., Choe, D.U., Choe, J.D., Suk, S.D., Kim, D., Park, D., Kim, K., Ryu, B.: A novel multi-channel field effect transistor (McFET) on bulk Si for high performance Sub-80 nm application. In: International electron device meeting. Technical digest, pp. 639–642 (2004)Google Scholar
  26. 26.
    Bohr, M.: The evolution of scaling from the homogeneous era to the heterogeneous era. In: International electron device meeting. Technical digest, pp. 1–6 (2011)Google Scholar
  27. 27.
    Li, Y., Hwang, C.-H.: Discrete-dopant-induced characteristic fluctuations in 16 nm multiple-gate silicon-on-insulator devices. J. Appl. Phys. 102, 084509 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Li, Y., Hwang, C.-H.: Effect of fin angle on electrical characteristics of nanoscale round-top-gate bulk FinFETs. IEEE Trans. Electron Dev. 54, 3426–3429 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Li, Y., Yu, S.-M., Lee, J.-W.: Quantum mechanical corrected simulation program with integrated circuit emphasis model for simulation of ultrathin oxide metal-oxide-semiconductor field effect transistor gate tunneling current. Jpn. J. Appl. Phys. 44, 2132–2136 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Li, Y., Hwang, C.-H.: High-frequency characteristic fluctuations of nano-MOSFET circuit induced by random dopants. IEEE Trans. Microw. Theor. Tech. 56, 2726–2733 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Grasser, T., Selberherr, S.: Mixed-mode device simulation. Microelectron. J. 31, 873–881 (2000)CrossRefGoogle Scholar
  32. 32.
    Li, Y., Yu, S.-M.: A parallel adaptive finite volume method for nanoscale double-gate MOSFETs simulation. J. Comput. Appl. Math. 175, 87–99 (2005)MathSciNetADSCrossRefMATHGoogle Scholar
  33. 33.
    Seevinck, E., List, F.J., Lohstroh, J.: Static-noise margin analysis of MOS SRAM cells. IEEE J. Solid State Circ. 22, 748–754 (1987)CrossRefGoogle Scholar
  34. 34.
    Frank, D.J., Laux, S.E., Fischetti, M.V.: Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go. In: International electron device meeting. Technical digest, pp. 553–556 (1992)Google Scholar
  35. 35.
    Yang, F.L., Lee, D.H., Chen, H.Y., Chang, C.Y., Liu, S.D., Huang, C.C., Chung, T.X., Chen, H.W., Huang, C.C., Liu, Y.H., Wu, C.C., Chen, C.C., Chen, S.C., Chen, Y.T., Chen, Y.H., Chen, C.J., Chan, B.W., Hsu, P.F., Shieh, J.H., Tao, H.J., Yeo, Y.C., Li, Y., Lee, J., Chen, W.P., Liang, M.S., Hu, C.: 5nm-gate nanowire FinFET. In: Symposium on VLSI technology. Digest of technical papers, pp. 196–197 (2004)Google Scholar
  36. 36.
    Li, Y., Chou, H.-M., Lee, J.-W.: Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire Fin-FETs. IEEE Trans. Nanotechnol. 4, 510–516 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Li, Y., Yu, S.-M., Hwang, J.-R., Yang, F.-L.: Discrete dopant fluctuated 20nm/15nm-gate planar CMOS. IEEE Trans. Electron Dev. 55, 1449–1455 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    International Technology Roadmap for Semiconductors (ITRS) 2007 EditionGoogle Scholar
  39. 39.
    Li, Y., Hwang, C.-H., Huang, H.-M.: Large-scale atomistic approach to discrete-dopant-induced characteristic fluctuations in silicon nanowire transistors. Phys. Status Solidi A Appl. Mater. Sci. 205, 1505–1510 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Li, Y., Yu, S.-M.: Comparison of random-dopant-induced threshold voltage fluctuation in nanoscale single-, double-, and surrounding-gate field-effect transistors. Jpn. J. Appl. Phys. 45, 6860–6865 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Li, Y., Hwang, C.-H., Cheng, H.-W.: Discrete-dopant-fluctuated transient behavior and variability suppression in 16-nm-gate complementary metal-oxide-semiconductor field-effect transistors. Jpn. J. Appl. Phys. 48, 04C051 (2009)Google Scholar
  42. 42.
    Li, Y., Hwang, C.-H.: Discrete-dopant-fluctuated threshold voltage roll-off in sub-16nm bulk FinFETs. Jpn. J. Appl. Phys. 47, 2580–2584 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Endo, K., Ishikawa, Y., Liu, Y., Masahara, M., Matsukawa, T., O’uchi, S., Ishii, K., Yamauchi, H., Tsukada, J., Suzuki, E.: Experimental evaluation of effects of channel doping on characteristics of FinFETs. Electron Dev. Lett. 28, 1123–1125 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Matsukawa, T., Endo, K., Ishikawa, Y., Yamauchi, H., O’uchi, S., Liu, Y., Tsukada, J., Ishii, K., Sakamoto, K., Suzuki, E., Masahara, M.: Fluctuation analysis of parasitic resistance in FinFETs with scaled fin thickness. Electron Dev. Lett. 30, 407–409 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Parallel and Scientific Computing Laboratory, Department of Electrical and Computer EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations