Advertisement

Wrapping Things Up...

  • João Filipe Ferreira
  • Jorge Dias
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 91)

Abstract

After introducing the reader to the set of tools encompassing probabilistic approaches for robotic perception, we are now in the position of coming full circle regarding our introductory consideration of Chapter 1.

Keywords

Bayesian Approach Bayesian Model Probabilistic Approach Probabilistic Neural Network Bayesian Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colombo, M., Seriés, P.: Bayes in the Brain – On Bayesian Modelling in Neuroscience. The British Journal for the Philosophy of Science 63(3), 697–723 (2012) ISSN 0007-0882, 1464-3537, doi:10.1093/bjps/axr043Google Scholar
  2. 2.
    Jacobs, R.A., Kruschke, J.K.: Bayesian learning theory applied to human cognition. Wiley Interdisciplinary Reviews: Cognitive Science 2(1), 8–21 (2011) ISSN 1939-5086, doi:10.1002/wcs.80CrossRefGoogle Scholar
  3. 3.
    Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: Statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Colas, F., Diard, J., Bessiére, P.: Common Bayesian Models For Common Cognitive Issues. Acta Biotheoretica 58(2-3), 191–216 (2010)CrossRefGoogle Scholar
  5. 5.
    McClelland, J.L., Botvinick, M.M., Noelle, D.C., Plaut, D.C., Rogers, T.T., Seidenberg, M.S., Smith, L.B.: Letting structure emerge: connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences 14(8), 348–356 (2010)CrossRefGoogle Scholar
  6. 6.
    Bessiére, P., Laugier, C., Siegwart, R. (eds.): Probabilistic Reasoning and Decision Making in Sensory-Motor Systems. STAR, vol. 46. Springer, Heidelberg (2008) ISBN 978-3-540-79006-8MATHGoogle Scholar
  7. 7.
    Chater, N., Tenenbaum, J.B., Yuille, A.: Probabilistic models of cognition: Conceptual foundations. Trends in Cognitive Sciences 10(7), 287–291 (2006)CrossRefGoogle Scholar
  8. 8.
    Heckerman, D.: A Tutorial on Learning With Bayesian Networks. Technical Report MSR-TR-95-06, Microsoft Research (1995)Google Scholar
  9. 9.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman and Company, S. Francisco (1982) ISBN-13: 978-0716715672Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Instituto de Sistemas e Robotica, Departamento de Engenharia Electrotécnica e Computadores Pinhal de Marrocos, Pólo II Universidade de CoimbraCoimbraPortugal

Personalised recommendations