Case-Study: Bayesian Hierarchy for Active Perception

  • João Filipe Ferreira
  • Jorge Dias
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 91)


Consider the following scenario (Fig. 8.1) - a moving observer is presented with a non-static 3D scene containing several moving entities, probably generating some kind of sound: how does this observer perceive the 3D structure, motion trajectory and velocity of all entities in the scene, while taking into account the ambiguities and conflicts inherent to the perceptual process?


Shared Memory Active Exploration Sensor Model Active Perception Occupancy Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferreira, J.F., Lobo, J., Bessiére, P., Castelo-Branco, M., Dias, J.: A Bayesian Framework for Active Artificial Perception. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 43(2), 699–711 (2013), doi:10.1109/TSMCB.2012.2214477Google Scholar
  2. 2.
    Ferreira, J.F., Castelo-Branco, M., Dias, J.: A hierarchical Bayesian framework for multimodal active perception. Adaptive Behavior 20(3), 172–190 (2012), doi:10.1177/1059712311434662, Published online ahead of print, March 1CrossRefGoogle Scholar
  3. 3.
    Ferreira, J.F., Tsiourti, C., Dias, J.: Learning emergent behaviours for a hierarchical Bayesian framework for active robotic perception. Cognitive Processing 13(1), 155–159 (2012), ISSN 1612-4782, doi:10.1007/s10339-012-0481-9CrossRefGoogle Scholar
  4. 4.
    Ferreira, J.F.: Bayesian Cognitive Models for 3D Structure and Motion Multimodal Perception. Ph.D. thesis, Faculty of Sciences and Technology of the University of Coimbra (FCTUC) (2011) (submitted in 2010)Google Scholar
  5. 5.
    Ferreira, J.F., Lobo, J., Dias, J.: Bayesian real-time perception algorithms on GPU — Real-time implementation of Bayesian models for multimodal perception using CUDA. Journal of Real-Time Image Processing 6(3), 171–186 (2011)CrossRefGoogle Scholar
  6. 6.
    Lee, M.D.: How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology 55(1), 1–7 (2011); Special Issue on Hierarchical Bayesian ModelsMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Colas, F., Diard, J., Bessiére, P.: Common Bayesian Models For Common Cognitive Issues. Acta Biotheoretica 58(2-3), 191–216 (2010)CrossRefGoogle Scholar
  8. 8.
    Ferreira, J.F., Dias, J.: A Bayesian Hierarchical Framework for Multimodal Active Perception. In: “Smarter Sensors, Easier Processing” - Workshop, 11th International Conference on Simulation of Adaptive Behavior, SAB 2010 (2010)Google Scholar
  9. 9.
    Bohg, J., Barck-holst, C., Huebner, K., Ralph, M., Rasolzadeh, B., Song, D., Kragic, D.: Towards Grasp-oriented Visual Perception For Humanoid Robots. International Journal of Humanoid Robotics 3(3), 387–434 (2009)CrossRefGoogle Scholar
  10. 10.
    Colas, F., Flacher, F., Tanner, T., Bessiére, P., Girard, B.: Bayesian models of eye movement selection with retinotopic maps. Biological Cybernetics 100, 203–214 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    de Croon, G.C.H.E., Sprinkhuizen-Kuyper, I.G., Postma, E.O.: Comparing Active Vision Models. Image and Vision Computing 27(4), 374–384 (2009)CrossRefGoogle Scholar
  12. 12.
    Ferreira, J.F., Pinho, C., Dias, J.: Implementation and Calibration of a Bayesian Binaural System for 3D Localisation. In: 2008 IEEE International Conference on Robotics and Biomimetics (ROBIO 2008), Bangkok, Thailand (2009)Google Scholar
  13. 13.
    Ferreira, J.F., Prado, J., Lobo, J., Dias, J.: Multimodal Active Exploration Using A Bayesian Approach. In: IASTED International Conference in Robotics and Applications, Cambridge MA, USA, pp. 319–326 (2009)Google Scholar
  14. 14.
    Gallup, D.: CUDA Stereo (2009),
  15. 15.
    Hauagge, D.C.: CUDABOF — Bayesian Optical Flow on NVidia’s CUDA (2009),
  16. 16.
    Itti, L., Baldi, P.: Bayesian surprise attracts human attention. Vision Research 49, 1295–1306 (2009)CrossRefGoogle Scholar
  17. 17.
    Watson, T.L., Krekelberg, B.: The Relationship between Saccadic Suppresion and Perceptual Stability. Current Biology 19(12), 1040–1043 (2009)CrossRefGoogle Scholar
  18. 18.
    Elazary, L., Itti, L.: Interesting objects are visually salient. Journal of Vision 8(3), 1–15 (2008)CrossRefGoogle Scholar
  19. 19.
    Ferreira, J.F., Bessiére, P., Mekhnacha, K., Lobo, J., Dias, J., Laugier, C.: Bayesian Models for Multimodal Perception of 3D Structure and Motion. In: International Conference on Cognitive Systems (CogSys 2008), pp. 103–108. University of Karlsruhe, Karlsruhe (2008)Google Scholar
  20. 20.
    Rommelsea, N.N., der Stigchelc, S.V., Sergeant, J.A.: A review on eye movement studies in childhood and adolescent psychiatry (2008), Article in press; corrected proof, doi:10.1016/j.bandc.2008.08.025Google Scholar
  21. 21.
    Castelo-Branco, M., Mendes, M., Sebastião, A.R., Reis, A., Soares, M., Saraiva, J., Bernardes, R., Flores, R., Pérez-Jurado, L., Silva, E.: Visual phenotype in Williams-Beuren syndrome challenges magnocellular theories explaining human neurodevelopmental visual cortical disorders. Journal of Clinical Investigation 117(12), 3720–3729 (2007)Google Scholar
  22. 22.
    Dankers, A., Barnes, N., Zelinsky, A.: A Reactive Vision System: Active-Dynamic Saliency. In: 5th International Conference on Computer Vision Systems, Bielefeld, Germany (2007)Google Scholar
  23. 23.
    Ferreira, J.F., Castelo-Branco, M.: 3D Structure and Motion Multimodal Perception. State-of-the-Art Report, Institute of Systems and Robotics and Institute of Biomedical Research in Light and Image, University of Coimbra. Bayesian Approach to Cognitive Systems (BACS) European Project (2007)Google Scholar
  24. 24.
    Koene, A., Morén, J., Trifa, V., Cheng, G.: Gaze shift reflex in a humanoid active vision system. In: 5th International Conference on Computer Vision Systems, Bielefeld, Germany (2007)Google Scholar
  25. 25.
    Lu, Y.C., Christensen, H., Cooke, M.: Active binaural distance estimation for dynamic sources. In: Interspeech 2007, Antwerp, Belgium, pp. 574–577 (2007)Google Scholar
  26. 26.
    NVIDIA (2007) CUDA Programming Guide ver 1.2Google Scholar
  27. 27.
    Shic, F., Scassellati, B.: A Behavioral Analysis of Computational Models of Visual Attention. International Journal of Computer Vision 73(2), 159–177 (2007)CrossRefGoogle Scholar
  28. 28.
    Tsotsos, J., Shubina, K.: Attention and Visual Search: Active Robotic Vision Systems that Search. In: The 5th International Conference on Computer Vision Systems, Bielefeld (2007)Google Scholar
  29. 29.
    Carmi, R., Itti, L.: Causal saliency effects during natural vision. In: ACM Eye Tracking Research and Applications, pp. 1–9 (2006)Google Scholar
  30. 30.
    Dankers, A., Barnes, N., Zelinsky, A.: Active Vision for Road Scene Awareness. In: IEEE Intelligent Vehicles Symposium (IVS 2005), Las Vegas, USA, pp. 187–192 (2005)Google Scholar
  31. 31.
    Rocha, R., Dias, J., Carvalho, A.: Cooperative Multi-Robot Systems: a study of Vision-based 3-D Mapping using Information Theory. Robotics and Autonomous Systems 53(3-4), 282–311 (2005)CrossRefGoogle Scholar
  32. 32.
    Tatler, B.W., Baddeley, R.J., Gilchrist, I.D.: Visual correlates of fixation selection: Effects of scale and time. Vision Research 45(5), 643–659 (2005)CrossRefGoogle Scholar
  33. 33.
    Carpenter, R.H.S.: The saccadic system: a neurological microcosm. Advances in Clinical Neuroscience and Rehabilitation 4, 6–8 (2004) Review ArticleGoogle Scholar
  34. 34.
    Caspi, A., Beutter, B.R., Eckstein, M.P.: The time course of visual information accrual guiding eye movement decisions. Proceedings of the National Academy of Sciences USA 101(35), 13086–13090 (2004)CrossRefGoogle Scholar
  35. 35.
    Ouerhani, N., von Wartburg, R., Hugli, H., Muri, R.: Empirical Validation of the Saliency-based Model of Visual Attention. Electronic Letters on Computer Vision and Image Analysis 3(1), 13–24 (2004)Google Scholar
  36. 36.
    Turano, K.A., Geruschat, D.R., Baker, F.H.: Oculomotor strategies for the direction of gaze tested with a real-world activity. Vision Research 43, 333–346 (2003)CrossRefGoogle Scholar
  37. 37.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3, 201–215 (2002), doi:10.1038/nrn755CrossRefGoogle Scholar
  38. 38.
    Dyde, R.T., Milner, A.D.: Two illusions of perceived orientation: one fools all of the people some of the time; the other fools all of the people all of the time. Experimental Brain Research 144, 518–527 (2002)CrossRefGoogle Scholar
  39. 39.
    Kopp, L., Gärdenfors, P.: Attention as a minimal criterion of intentionality in robots. Cognitive Science Quarterly 2, 302–319 (2002)Google Scholar
  40. 40.
    Parkhurst, D., Law, K., Niebur, E.: Modeling the role of salience in the allocation of overt visual attention. Vision Research 42, 107–123 (2002)CrossRefGoogle Scholar
  41. 41.
    Breazeal, C., Edsinger, A., Fitzpatrick, P., Scassellati, B.: Active Vision for Sociable Robots. IEEE Transactions on Systems, Man, and Cybernetics–Part A: Systems and Humans 31(5), 443–453 (2001)CrossRefGoogle Scholar
  42. 42.
    Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.: Biomimetic Oculomotor Control. Adaptive Behaviour - Special Issue on Biologically Inspired and Biomimetic System 9(3-4), 189–208 (2001)CrossRefGoogle Scholar
  43. 43.
    Carpenter, R.H.S.: The neural control of looking. Current Biology 10, 291–293 (2000) PrimerCrossRefGoogle Scholar
  44. 44.
    Ballard, D.H.: An Introduction to Natural Computation. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  45. 45.
    Breazeal, C., Scassellati, B.: A Context-Dependent Attention System for a Social Robot. In: Sixteenth International Joint Conference on Artificial Intelligence table of contents, pp. 1146–1153 (1999)Google Scholar
  46. 46.
    Simoncelli, E.P.: Bayesian Multi-Scale Differential Optical Flow. In: Jähne, B., Haussecker, H., Geissler, P. (eds.) Handbook of Computer Vision and Applications. Academic Press (1999)Google Scholar
  47. 47.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  48. 48.
    Murphy, K.J., Carey, D.P., Goodale, M.A.: The Perception of Spatial Relations in a Patient with Visual Form Agnosia. Cognitive Neuropsyshology 15(6/7/8), 705–722 (1998)CrossRefGoogle Scholar
  49. 49.
    Cutting, J.E., Vishton, P.M.: Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In: Epstein, W., Rogers, S. (eds.) Handbook of Perception and Cognition, vol. 5. Academic Press (1995) Perception of space and motionGoogle Scholar
  50. 50.
    Niebur, E., Itti, L., Koch, C.: Modeling the “where” visual pathway. In: Sejnowski, T.J. (ed.) 2nd Joint Symposium on Neural Computation, Caltech-UCSD. Institute for Neural Computation, La Jolla, vol. 5, pp. 26–35 (1995)Google Scholar
  51. 51.
    Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artificial Intelligence 78, 507–545 (1995)CrossRefGoogle Scholar
  52. 52.
    Burr, D.C., Morrone, M.C., Ross, J.: Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371, 511–513 (1994) Letters to natureCrossRefGoogle Scholar
  53. 53.
    Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends in Neurosciences 15(1), 20–25 (1992)CrossRefGoogle Scholar
  54. 54.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. IEEE Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  55. 55.
    Aloimonos, J., Weiss, I., Bandyopadhyay, A.: Active Vision. International Journal of Computer Vision 1, 333–356 (1987)CrossRefGoogle Scholar
  56. 56.
    Bajcsy, R.: Active perception vs passive perception. In: Third IEEE Workshop on Computer Vision, Bellair, Michigan, pp. 55–59 (1985)Google Scholar
  57. 57.
    Mishkin, M., Ungerleider, L.G., Macko, K.A.: Object vision and spatial vision: two cortical pathways. Trends in Neuroscience 6, 414–417 (1983)CrossRefGoogle Scholar
  58. 58.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman and Company, S. Francisco (1982) ISBN-13: 978-0716715672Google Scholar
  59. 59.
    Ungerleider, L.G., Mishkin, M.: Two cortical visual systems. In: Ingle, D.J., Goodale, M.A., Mansfield, R.J.W. (eds.) Analysis of Visual Behaviour. MIT Press, Cambridge (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Instituto de Sistemas e Robotica, Departamento de Engenharia Electrotécnica e Computadores Pinhal de Marrocos, Pólo II Universidade de CoimbraCoimbraPortugal

Personalised recommendations