Case-Study: Bayesian 3D Independent Motion Segmentation with IMU-aided RBG-D Sensor

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 91)

Abstract

In this chapter, we will present a case-study consisting of a two-tiered hierarchical Bayesian model to estimate the location of objects moving independently from the observer, reported in the publication by Lobo, Ferreira, Trindade, and Dias [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lobo, J., Ferreira, J.F., Trindade, P., Dias, J.: Bayesian 3D Independent Motion Segmentation with IMU-Aided RBG-D Sensor. In: Proceedings of the 2012 IEEE International Conference on Multisensor Fusion and Information Integration (MFI 2012), Hambur (2012)Google Scholar
  2. 2.
    Ciliberto, C., Pattacini, U., Natale, L., Nori, F., Metta, G.: Reexamining Lucas-Kanade method for real-time independent motion detection: Application to the iCub humanoid robot. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4154–4160 (2011), doi:10.1109/IROS.2011.6094985Google Scholar
  3. 3.
    Hwangbo, M., Kim, J.S., Kanade, T.: Inertial-aided klt feature tracking for a moving camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 1909–1916 (2009), doi:10.1109/IROS.2009.5354093Google Scholar
  4. 4.
    Kim, J.S., Hwangbo, M., Kanade, T.: Realtime affine-photometric klt feature tracker on gpu in cuda framework. In: 2009 IEEE 12th International Conference onComputer Vision Workshops (ICCV Workshops), pp. 886–893 (2009), doi:10.1109/ICCVW.2009.5457608Google Scholar
  5. 5.
    Corke, P., Lobo, J., Dias, J.: An introduction to inertial and visual sensing. The International Journal of Robotics Research (IJRR) Special Issue from the 2nd Workshop on Integration of Vision and Inertial Sensors 26(6), 519–535 (2007), doi:10.1177/0278364907079279Google Scholar
  6. 6.
    Lobo, J., Dias, J.: Relative pose calibration between visual and inertial sensors. The International Journal of Robotics Research (IJRR) Special Issue from the 2nd Workshop on Integration of Vision and Inertial Sensors 26, 561–577 (2007)Google Scholar
  7. 7.
    Roetenberg, D., Luinge, H., Baten, C., Veltink, P.: Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(3), 395–405 (2005), doi:10.1109/TNSRE.2005.847353, see also IEEE Trans. on Rehabilitation EngineeringCrossRefGoogle Scholar
  8. 8.
    Roetenberg, D., Luinge, H., Veltink, P.: Inertial and magnetic sensing of human movement near ferromagnetic materials. In: The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 268–269 (2003)Google Scholar
  9. 9.
    Bullier, J.: Integrated model of visual processing. Brain Research Reviews 36(2-3), 96–107 (2001) ISSN 0165-0173, doi:10.1016/S0165-0173(01)00085-6CrossRefGoogle Scholar
  10. 10.
    Caruso, M.J., Bratland, T., Smith, C.H., Schneider, R.: A New Perspective on Magnetic Field Sensing. Technical report, Honeywell, Inc. (1998)Google Scholar
  11. 11.
    Barron, J., Fleet, D., Beauchemin, S.: Performance of Optical Flow Techniques. International Journal of Computer Vision 12(1), 43–77 (1994), doi:10.1007/BF01420984CrossRefGoogle Scholar
  12. 12.
    Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proceedings of Imaging Understanding Workshop, pp. 674–679 (1981)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Instituto de Sistemas e Robotica, Departamento de Engenharia Electrotécnica e Computadores Pinhal de Marrocos, Pólo II Universidade de CoimbraCoimbraPortugal

Personalised recommendations