Representation of 3D Space and Sensor Modelling Within a Probabilistic Framework

  • João Filipe Ferreira
  • Jorge Dias
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 91)


For living organisms, perception can be defined as a set of cognitive processes, in the sense that it consists in the processing of sensorial data in order to generate essential information with the purpose of building a coherent and useful representation of the surrounding world. Perception has been paramount for living beings, its importance having propagated from supporting the original primal objective of survival up to the more recent evolutionary purpose of promoting social interaction.


Mobile Robot Inferior Colliculus Sensor Fusion Sensor Model Occupancy Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferreira, J.F., Lobo, J., Bessiére, P., Castelo-Branco, M., Dias, J.: A Bayesian Framework for Active Artificial Perception. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 43(2), 699–711 (2013), doi:10.1109/TSMCB.2012.2214477Google Scholar
  2. 2.
    Portugal, D., Rocha, R.P.: Topological Information from Grid Maps for Robot Navigation. In: Proceedings of the 4th International Conference on Agents and Artificial Intelligence (ICAART 2012), Vilamoura, Portugal, pp. 137–143 (2012)Google Scholar
  3. 3.
    Ranganathan, A., Dellaer, F.: Online Probabilistic Topological Mapping. International Journal of Robotics Research 30(6), 755–771 (2011)CrossRefGoogle Scholar
  4. 4.
    Colas, F., Diard, J., Bessiére, P.: Common Bayesian Models For Common Cognitive Issues. Acta Biotheoretica 58(2-3), 191–216 (2010)CrossRefGoogle Scholar
  5. 5.
    Faria, D.R., Martins, R., Lobo, J., Dias, J.: Probabilistic Representation of 3D Object Shape by In-Hand Exploration. In: Proceedings of The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2010, Taipei, Taiwan (2010)Google Scholar
  6. 6.
    Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: A Probabilistic, Flexible, and Compact 3D Map Representation for Robotic Systems. In: Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation (2010)Google Scholar
  7. 7.
    Ferreira, J.F., Pinho, C., Dias, J.: Implementation and Calibration of a Bayesian Binaural System for 3D Localisation. In: 2008 IEEE International Conference on Robotics and Biomimetics (ROBIO 2008), Bangkok, Thailand (2009)Google Scholar
  8. 8.
    Burgess, N.: Spatial Cognition and the Brain. Annals of the New York Academy of Sciences 1124, 77–97 (2008)CrossRefGoogle Scholar
  9. 9.
    Byrne, P., Becker, S.: A principle for learning egocentric-allocentric transformation. Neural Computation 20(3), 709–737 (2008)zbMATHCrossRefGoogle Scholar
  10. 10.
    Ferreira, J.F., Bessiére, P., Mekhnacha, K., Lobo, J., Dias, J., Laugier, C.: Bayesian Models for Multimodal Perception of 3D Structure and Motion. In: International Conference on Cognitive Systems (CogSys 2008), pp. 103–108. University of Karlsruhe, Karlsruhe (2008)Google Scholar
  11. 11.
    Wiener, J.M., Meilinger, T., Berthoz, A.: The integration of spatial information across different perspectives. In: Proceedings of the 30th Annual Conference of the Cognitive Science Society (CogSci 2008), pp. 2031–2036 (2008)Google Scholar
  12. 12.
    Doya, K., Ishii, S., Pouget, A., Rao, R.P.N. (eds.): Bayesian Brain — Probabilistic Approaches to Neural Coding. MIT Press (2007) ISBN 978-0-262-04238-3Google Scholar
  13. 13.
    Meilinger, T., Riecke, B.E., Bülthoff, H.H.: Orientation Specificity in Long-Term-Memory for Environmental Spaces. In: Proceedings of the 29th Annual Conference of the Cognitive Science Society (CogSci 2007), pp. 479–484 (2007)Google Scholar
  14. 14.
    Tapus, A., Battaglia, F., Siegwart, R.: The Hippocampal Place Cells and Fingerprints of Places: Spatial Representation Animals, Animats and Robots. In: Proceedings of the 9th International Conference on Intelligent Autonomous Systems, IAS-9 (2006)Google Scholar
  15. 15.
    Vasudevan, S., Nguyen, V., Siegwart, R.: Towards a Cognitive Probabilistic Representation of Space for Mobile Robots. In: Proceedings of the IEEE International Coference on Information Acquisition (ICIA), Shandong, China (2006)Google Scholar
  16. 16.
    Taddeo, M., Floridi, L.: Solving the symbol grounding problem: a critical review of fifteen years of research. Journal of Experimental and Theoretical Artificial Intelligence 17(4), 419–445 (2005)CrossRefGoogle Scholar
  17. 17.
    Faller, C., Merimaa, J.: Source localization in complex listening situations: Selection of binaural cues based on interaural coherence. Journal of the Acoustical Society of America 116(5), 3075–3089 (2004), doi:10.1121/1.1791872CrossRefGoogle Scholar
  18. 18.
    Kapralos, B., Jenkin, M.R.M., Milios, E.: Auditory Perception and Spatial (3D) Auditory Systems. Technical Report CS-2003-07, York University (2003)Google Scholar
  19. 19.
    Tomatis, N., Nourbakhsh, I., Siegwart, R.: Hybrid simultaneous localization and map building: a natural integration of topological and metric. Robotics and Autonomous Systems 44(1), 3–14 (2003)CrossRefGoogle Scholar
  20. 20.
    Cohen, Y.E., Anderson, R.E.: A Common Reference Frame for Movement Plans in the Posterior Parietal Cortex. Nature Reviews Neuroscience 3, 553–562 (2002)CrossRefGoogle Scholar
  21. 21.
    Gallistel, C.R.: Language and spatial frames of reference in mind and brain. TRENDS in Cognitive Sciences 6(8), 321–322 (2002)CrossRefGoogle Scholar
  22. 22.
    King, A.J., Schnupp, J.W., Doubell, T.P.: The shape of ears to come: dynamic coding of auditory space. TRENDS in Cognitive Sciences 5(6), 261–270 (2001)CrossRefGoogle Scholar
  23. 23.
    Shinn-Cunningham, B.G., Santarelli, S., Kopco, N.: Tori of confusion: Binaural localization cues for sources within reach of a listener. Journal of the Acoustical Society of America 107(3), 1627–1636 (2000)CrossRefGoogle Scholar
  24. 24.
    Colby, C.L.: Action-Oriented Spatial Reference Frames in Cortex. Neuron 20, 15–24 (1998) ReviewCrossRefGoogle Scholar
  25. 25.
    Klatzky, R.L.: Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, p. 1. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    McIntyre, J., Stratta, F., Lacquaniti, F.: Short-Term Memory for Reaching to Visual Targets: Psychophysical Evidence for Body-Centered Reference Frames. Journal of Neuroscience 18(20), 8423–8435 (1998)Google Scholar
  27. 27.
    Murphy, K.J., Carey, D.P., Goodale, M.A.: The Perception of Spatial Relations in a Patient with Visual Form Agnosia. Cognitive Neuropsyshology 15(6/7/8), 705–722 (1998)CrossRefGoogle Scholar
  28. 28.
    Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)zbMATHCrossRefGoogle Scholar
  29. 29.
    Cutting, J.E., Vishton, P.M.: Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In: Epstein, W., Rogers, S. (eds.) Handbook of Perception and Cognition, vol. 5, Academic Press (1995) Perception of space and motionGoogle Scholar
  30. 30.
    Gordon, J., Ghilardi, M.F., Ghez, C.: Accuracy of planar reaching movements. I. Independence of direction and extent variability. Experimental Brain Research 99(1), 97–111 (1994)CrossRefGoogle Scholar
  31. 31.
    Kuipers, B., Byun, Y.T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems 8, 47–63 (1991)CrossRefGoogle Scholar
  32. 32.
    Leonard, J.J., Durrant-Whyte, H.F.: Mobile Robot Localization by Tracking Geometric Beacons. IEEE Transactions on Robotics and Automation 7(3), 376–382 (1991)CrossRefGoogle Scholar
  33. 33.
    Viemeister, N.F., Wakefield, G.H.: Temporal integration and multiple looks. The Journal of the Acoustical Society of America 90(2), 858–865 (1991)CrossRefGoogle Scholar
  34. 34.
    Gallistel, C.R.: The organization of learning. Learning, development, and conceptual change. MIT Press, Cambridge (1990)Google Scholar
  35. 35.
    Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)CrossRefGoogle Scholar
  36. 36.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. IEEE Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  37. 37.
    Oppenheim, A.V., Schafer, R.: Discrete-Time Signal Processing (1989)Google Scholar
  38. 38.
    Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Magazine 9(2), 61–74 (1988)Google Scholar
  39. 39.
    Zurek, P.M.: The precedence effect. In: Yost, W., Gourevitch, G. (eds.) Directional Hearing. Springer (1987)Google Scholar
  40. 40.
    Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: IEEE International Conference on Robotics and Automation (1985)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Instituto de Sistemas e Robotica, Departamento de Engenharia Electrotécnica e Computadores Pinhal de Marrocos, Pólo II Universidade de CoimbraCoimbraPortugal

Personalised recommendations