Advertisement

Encoding of Spatial Perspectives in Human-Machine Interaction

  • Milan Gnjatović
  • Vlado Delić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8113)

Abstract

A spatial context is often present in speech-based human-machine interaction, and its role is especially significant in interaction with robotic systems. Studies in the cognitive sciences show that frames of reference used in language and in non-linguistic cognition are correlated. In general, humans may use multiple frames of references. But since the visual sensory modality operates mainly in a relative frame, most of users normally and preferably use relative reference frame in spatial language. Therefore, there is a need to enable dialogue systems to process dialogue acts that instantiate user-centered frames of reference. This paper introduces a cognitively-inspired, computational modeling method that addresses this research question, and illustrates it for a three-party human-machine interaction scenario. The paper also reports on an implementation of the proposed model within a prototype system, and briefly discusses some aspects of the model’s generalizability and scalability.

Keywords

Human-machine interaction spatial perspective relative frame of reference focus tree cognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levinson, S.C.: Space in Language and Cognition: Explorations in Cognitive Diversity. Cambridge University Press (2003)Google Scholar
  2. 2.
    Bowerman, M.: The origins of children’s spatial semantic categories: cognitive vs. linguistic determinants. In: Gumperz, J.J., Levinson, S.C. (eds.) Rethinking Linguistic Relativity, pp. 145–176. Cambridge University Press (1996)Google Scholar
  3. 3.
    Bowerman, M., Choi, S.: Space under construction: Language-specific spatial categorization in first language acquisition. In: Gentner, D., Goldin-Meadow, S. (eds.) Language in Mind, pp. 387–427. MIT Press, Cambridge (2004)Google Scholar
  4. 4.
    Gentner, D., Bowerman, M.: Why some spatial semantic categories are harder to learn than others: The typological prevalence hypothesis. In: Guo, J., Lieven, E., Budwig, N., Ervin-Tripp, S., Nakamura, K., Ozcaliskan, S. (eds.) Crosslinguistic Approaches to the Psychology of Language: Research in the Tradition of Dan Isaac Slobin, pp. 465–480. Psychology Press, New York (2009)Google Scholar
  5. 5.
    Gnjatović, M., Delić, V.: Attention and linguistic encoding of motion events in human-machine interaction. In: Halupka-Rešetar, S., Marković, M., Milicćev, T., Milićević, N. (eds.) Selected Papers from SinFonIJA, pp. 237–257. Cambridge Scholar Publishing (2012)Google Scholar
  6. 6.
    Gnjatović, M., Janev, M., Delić, V.: Focus Tree: Modeling Attentional Information in Task-Oriented Human-Machine Interaction. Applied Intelligence 37(3), 305–320 (2012)CrossRefGoogle Scholar
  7. 7.
    Gnjatović, M., Delić, V.: A Cognitively-Inspired Method for Meaning Representation in Dialogue Systems. In: Proc. of the 3rd IEEE International Conference on Cognitive Infocommunications, Kosice, Slovakia, pp. 383–388 (2012)Google Scholar
  8. 8.
    Gnjatović, M., Tasevski, J., Nikolić, M., Mišković, D., Borovac, B., Delić, V.: Adaptive Multimodal Interaction with Industrial Robot. In: Proc. of the IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics (SISY 2012), Subotica, Serbia, pp. 329–333 (2012)Google Scholar
  9. 9.
    Gnjatović, M., Rösner, D.: Adaptive Dialogue Management in the NIMITEK Prototype System. In: André, E., Dybkjær, L., Minker, W., Neumann, H., Pieraccini, R., Weber, M. (eds.) PIT 2008. LNCS (LNAI), vol. 5078, pp. 14–25. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gnjatović, M., Suzić, S., Morošev, M., Delić, V.: A Prototype Conversational Agent Embedded in Android-Based Mobile Phones. In: Proc. of the TELFOR 2012, Belgrade, Serbia, pp. 1444–1447 (2012)Google Scholar
  11. 11.
    Gnjatović, M., Pekar, D., Delić, V.: Naturalness, Adaptation and Cooperativeness in Spoken Dialogue Systems. In: Esposito, A., Esposito, A.M., Martone, R., Müller, V.C., Scarpetta, G. (eds.) COST 2102 Int. Training School 2010. LNCS, vol. 6456, pp. 298–304. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Struiksma, M.E., Noordzij, M.L., Postma, A.: Reference frame preferences in haptics differ for the blind and sighted in the horizontal but not in the vertical plane. Perception 40(6), 725–738 (2011)CrossRefGoogle Scholar
  13. 13.
    Grosz, B., Sidner, C.: Attention, Intentions, and the Structure of Discourse. Computational Linguistics 12(3), 175–204 (1986)Google Scholar
  14. 14.
    Halliday, M.: An Introduction to Functional Grammar, 2nd edn. Edward Arnold, London (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Milan Gnjatović
    • 1
  • Vlado Delić
    • 1
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations