Exponential Replication of Patterns in the Signal Tile Assembly Model

  • Alexandra Keenan
  • Robert Schweller
  • Xingsi Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8141)


Chemical self-replicators are of considerable interest in the field of nanomanufacturing and as a model for evolution. We introduce the problem of self-replication of rectangular two-dimensional patterns in the practically motivated Signal Tile Assembly Model (STAM) [9]. The STAM is based on the Tile Assembly Model (TAM) which is a mathematical model of self-assembly in which DNA tile monomers may attach to other DNA tile monomers in a programmable way. More abstractly, four-sided tiles are assigned glue types to each edge, and self-assembly occurs when singleton tiles bind to a growing assembly, if the glue types match and the glue binding strength exceeds some threshold. The signal tile extension of the TAM allows signals to be propagated across assemblies to activate glues or break apart assemblies. Here, we construct a pattern replicator that replicates a two-dimensional input pattern over some fixed alphabet of size φ with O(φ) tile types, O(φ) unique glues, and a signal complexity of O(1). Furthermore, we show that this replication system displays exponential growth in n, the number of replicates of the initial patterned assembly.


Tile Type Bond Graph Active Tile Tile Assembly Model North Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abel, Z., Benbernou, N., Damian, M., Demaine, E., Demaine, M., Flatland, R., Kominers, S., Schweller, R.: Shape replication through self-assembly and RNase enzymes. In: SODA 2010: Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, Texas. Society for Industrial and Applied Mathematics (2010)Google Scholar
  2. 2.
    Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors). Arxiv preprint arXiv:1201.1650 (2012)Google Scholar
  3. 3.
    Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing 7(3), 347–370 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Demaine, E.D., Eisenstat, S., Ishaque, M., Winslow, A.: One-dimensional staged self-assembly. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 100–114. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Hendricks, J., Padilla, J.E., Patitz, M.J., Rogers, T.A.: Signal transmission across tile assemblies: 3D static tiles simulate active self-assembly by 2D signal-passing tiles. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 90–104. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Kao, M.-Y., Schweller, R.T.: Reducing tile complexity for self-assembly through temperature programming. In: SODA 2006: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 571–580 (2006)Google Scholar
  7. 7.
    Marchal, P.: John von neumann: The founding father of artificial life. Artificial Life 4(3), 229–235 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Padilla, J.E., Liu, W., Seeman, N.C.: Hierarchical self assembly of patterns from the Robinson tilings: DNA tile design in an enhanced tile assembly model, Natural Computing (online first August 17, 2011)Google Scholar
  9. 9.
    Padilla, J.E., Patitz, M.J., Pena, R., Schweller, R.T., Seeman, N.C., Sheline, R., Summers, S.M., Zhong, X.: Asynchronous signal passing for tile self-assembly: Fuel efficient computation and efficient assembly of shapes. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 174–185. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Patzke, V., von Kiedrowski, G.: Self-replicating sytems. ARKIVOC 5, 293–310 (2007)Google Scholar
  11. 11.
    Paul, N., Joyce, G.F.: A self-replicating ligase ribozyme. PNAS 99(120), 12733–12740 (2002)CrossRefGoogle Scholar
  12. 12.
    Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive systems and self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA11. LNCS, vol. 3892, pp. 257–274. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. PNAS 109(17), 6405–6410 (2012)CrossRefGoogle Scholar
  14. 14.
    Schweller, R., Sherman, M.: Fuel efficient computation in passive self-assembly. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), New Orleans, Louisiana, pp. 1513 – 1525 (2013)Google Scholar
  15. 15.
    Szathmary, E., Gladkih, I.: A self-replicating hexadeoxynucleotide. Journal of Theoretical Biology 138(1), 55–58 (1989)CrossRefGoogle Scholar
  16. 16.
    Tjivikua, T., Ballester, P., Rebek Jr., J.: Self-repllicating system. J. Am. Chem. Soc. 112(3), 1249–1250 (1990)CrossRefGoogle Scholar
  17. 17.
    von Kiedrowski, G.: A self-replicating hexadeoxynucleotide. Angewandte Chemie International Edition in English 25(10), 932–935 (1986)CrossRefGoogle Scholar
  18. 18.
    Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology (June 1998)Google Scholar
  19. 19.
    Zielinski, W., Orgel, L.: Autocatalytic synthesis of a tetranucleotide analogue. Nature 327, 346–347 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexandra Keenan
    • 1
  • Robert Schweller
    • 1
  • Xingsi Zhong
    • 1
  1. 1.Department of Computer ScienceUniversity of Texas - Pan AmericanUSA

Personalised recommendations