DNA Reservoir Computing: A Novel Molecular Computing Approach

  • Alireza Goudarzi
  • Matthew R. Lakin
  • Darko Stefanovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8141)


We propose a novel molecular computing approach based on reservoir computing. In reservoir computing, a dynamical core, called a reservoir, is perturbed with an external input signal while a readout layer maps the reservoir dynamics to a target output. Computation takes place as a transformation from the input space to a high-dimensional spatiotemporal feature space created by the transient dynamics of the reservoir. The readout layer then combines these features to produce the target output. We show that coupled deoxyribozyme oscillators can act as the reservoir. We show that despite using only three coupled oscillators, a molecular reservoir computer could achieve 90% accuracy on a benchmark temporal problem.


Recurrent Neural Network Target Output Reservoir State Oscillator Dynamic Echo State Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)CrossRefGoogle Scholar
  2. 2.
    Farfel, J., Stefanovic, D.: Towards practical biomolecular computers using microfluidic deoxyribozyme logic gate networks. In: Carbone, A., Pierce, N.A. (eds.) DNA11. LNCS, vol. 3892, pp. 38–54. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. KI - Künstliche Intelligenz 26(4), 365–371 (2012)CrossRefGoogle Scholar
  4. 4.
    Smerieri, A., Duport, F., Paquot, Y., Schrauwen, B., Haelterman, M., Massar, S.: Analog readout for optical reservoir computers. In: Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems, pp. 953–961. Curran Associates, Inc (2012)Google Scholar
  5. 5.
    Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., Massar, S.: Optoelectronic reservoir computing. Scientific Reports 2 (2012)Google Scholar
  6. 6.
    Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach. Technical Report GMD Report 159, German National Research Center for Information Technology, St. Augustin-Germany (2002)Google Scholar
  9. 9.
    Widrow, B., Lehr, M.: 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)CrossRefGoogle Scholar
  10. 10.
    Penrose, R.: A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society 51, 406–413 (1955)CrossRefMATHGoogle Scholar
  11. 11.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus (2006)MATHGoogle Scholar
  12. 12.
    Sussillo, D., Barak, O.: Opening the black box: Low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Computation 25(3), 626–649 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009)CrossRefGoogle Scholar
  14. 14.
    Goudarzi, A., Teuscher, C., Gulbahce, N., Rohlf, T.: Emergent criticality through adaptive information processing in Boolean networks. Phys. Rev. Lett. 108, 128702 (2012)CrossRefGoogle Scholar
  15. 15.
    Krawitz, P., Shmulevich, I.: Basin entropy in boolean network ensembles. Phys. Rev. Lett. 98(15), 158701 (2007)CrossRefGoogle Scholar
  16. 16.
    Snyder, D., Goudarzi, A., Teuscher, C.: Computational capabilities of random automata networks for reservoir computing. Phys. Rev. E 87, 042808 (2013)CrossRefGoogle Scholar
  17. 17.
    Jaeger, H.: Short term memory in echo state networks. Technical Report GMD Report 152, GMD-Forschungszentrum Informationstechnik (2002)Google Scholar
  18. 18.
    Rohlf, T., Gulbahce, N., Teuscher, C.: Damage spreading and criticality in finite random dynamical networks. Phys. Rev. Lett. 99(24), 248701 (2007)CrossRefGoogle Scholar
  19. 19.
    Natschläger, T., Maass, W.: Information dynamics and emergent computation in recurrent circuits of spiking neurons. In: Thrun, S., Saul, L., Schoelkpf, B. (eds.) Proc. of NIPS 2003, Advances in Neural Information Processing Systems, vol. 16, pp. 1255–1262. MIT Press, Cambridge (2004)Google Scholar
  20. 20.
    Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation 16(7), 1413–1436 (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Büsing, L., Schrauwen, B., Legenstein, R.: Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Computation 22(5), 1272–1311 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Boedecker, J., Obst, O., Mayer, N.M., Asada, M.: Initialization and self-organized optimization of recurrent neural network connectivity. HFSP Journal 3(5), 340–349 (2009)CrossRefGoogle Scholar
  23. 23.
    Morgan, C., Stefanovic, D., Moore, C., Stojanovic, M.N.: Building the components for a biomolecular computer. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA10. LNCS, vol. 3384, pp. 247–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Chou, H.P., Unger, M., Quake, S.: A microfabricated rotary pump. Biomedical Microdevices 3(4), 323–330 (2001)CrossRefGoogle Scholar
  25. 25.
    Galas, J.C., Haghiri-Gosnet, A.M., Estevez-Torres, A.: A nanoliter-scale open chemical reactor. Lab Chip 13, 415–423 (2013)CrossRefGoogle Scholar
  26. 26.
    Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nature Communications 2 (2011)Google Scholar
  27. 27.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  28. 28.
    Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)CrossRefGoogle Scholar
  29. 29.
    Pei, R., Matamoros, E., Liu, M., Stefanovic, D., Stojanovic, M.N.: Training a molecular automaton to play a game. Nature Nanotechnology 5(11), 773–777 (2010)CrossRefGoogle Scholar
  30. 30.
    Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318–322 (2008)CrossRefGoogle Scholar
  31. 31.
    Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012)CrossRefGoogle Scholar
  32. 32.
    Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)CrossRefGoogle Scholar
  33. 33.
    Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 588–597. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Jones, B., Stekel, D., Rowe, J., Fernando, C.: Is there a liquid state machine in the bacterium Escherichia coli? In: IEEE Symposium on Artificial Life, ALIFE 2007, pp. 187–191 (2007)Google Scholar
  35. 35.
    Yamazaki, T., Tanaka, S.: The cerebellum as a liquid state machine. Neural Networks 20(3), 290–297 (2007)CrossRefMATHGoogle Scholar
  36. 36.
    Modi, S., Nizak, C., Surana, S., Halder, S., Krishnan, Y.: Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nano 8(6), 459–467 (2013)CrossRefGoogle Scholar
  37. 37.
    Beyer, S., Dittmer, W., Simmel, F.: Design variations for an aptamer-based DNA nanodevice. Journal of Biomedical Nanotechnology 1(1), 96–101 (2005)CrossRefGoogle Scholar
  38. 38.
    Beyer, S., Simmel, F.C.: A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Research 34(5), 1581–1587 (2006)CrossRefGoogle Scholar
  39. 39.
    Shapiro, E., Gil, B.: RNA computing in a living cell. Science 322(5900), 387–388 (2008)CrossRefGoogle Scholar
  40. 40.
    Dambre, J., Verstraeten, D., Schrauwen, B., Massar, S.: Information processing capacity of dynamical systems. Scientific Reports 2 (2012)Google Scholar
  41. 41.
    Lakin, M.R., Minnich, A., Lane, T., Stefanovic, D.: Towards a biomolecular learning machine. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 152–163. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alireza Goudarzi
    • 1
  • Matthew R. Lakin
    • 1
  • Darko Stefanovic
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of New MexicoMexico
  2. 2.Center for Biomedical EngineeringUniversity of New MexicoMexico

Personalised recommendations