Modular Verification of DNA Strand Displacement Networks via Serializability Analysis

  • Matthew R. Lakin
  • Andrew Phillips
  • Darko Stefanovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8141)


DNA strand displacement gates can be used to emulate arbitrary chemical reactions, and a number of different schemes have been proposed to achieve this. Here we develop modular correctness proofs for strand displacement encodings of chemical reaction networks and show how they may be applied to two-domain strand displacement systems. Our notion of correctness is serializability of interleaved reaction encodings, and we infer this global property from the properties of the gates that encode the individual chemical reactions. This allows correctness to be inferred for arbitrary systems constructed using these components, and we illustrate this by applying our results to a two-domain implementation of a well-known approximate majority voting system.


Terminal State Formal Species Formal Trace Strand Displacement Serial Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)CrossRefGoogle Scholar
  2. 2.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. PNAS 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  3. 3.
    Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10(1), 407–428 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. JRS Interface 9(68), 470–486 (2012)CrossRefGoogle Scholar
  5. 5.
    Cardelli, L.: Two-domain DNA strand displacement. Math. Structures Comput. Sci. 23, 247–271 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and analysis of DNA strand displacement devices using probabilistic model checking. JRS Interface 9(72), 1470–1485 (2012)CrossRefGoogle Scholar
  7. 7.
    Papadimitriou, C.H.: The serializability of concurrent database updates. Journal of the ACM 26(4), 631–653 (1979)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. In: Stefanovic, D., Turberfield, A. (eds.) DNA18. LNCS, vol. 7433, pp. 25–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. JRS Interface 6(Suppl. 4), S419–S436 (2009)Google Scholar
  10. 10.
    Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: A design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)CrossRefGoogle Scholar
  11. 11.
    Condon, A., Kirkpatrick, B., Maňuch, J.: Reachability bounds for chemical reaction networks and strand displacement systems. In: Stefanovic, D., Turberfield, A. (eds.) DNA18. LNCS, vol. 7433, pp. 43–57. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Shin, S.W.: Compiling and verifying DNA-based chemical reaction network implementations. Master’s thesis, California Institute of Technology (2012)Google Scholar
  13. 13.
    Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Dist. Comput. 21(2), 87–102 (2008)CrossRefMATHGoogle Scholar
  14. 14.
    Dong, Q.: A bisimulation approach to verification of molecular implementations of formal chemical reaction networks. Master’s thesis, Stony Brook University (2012)Google Scholar
  15. 15.
    Cardelli, L., Laneve, C.: Reversible structures. In: Fages, F. (ed.) CMSB 2011 Proceedings, pp. 131–140. ACM (2011)Google Scholar
  16. 16.
    Cardelli, L., Laneve, C.: Reversibility in massive concurrent systems. Sci. Ann. Comp. Sci. 21(2), 175–198 (2011)MathSciNetGoogle Scholar
  17. 17.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7, 615–633 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 543–584. Springer (2009)Google Scholar
  19. 19.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matthew R. Lakin
    • 1
  • Andrew Phillips
    • 2
  • Darko Stefanovic
    • 1
    • 3
  1. 1.Department of Computer ScienceUniversity of New MexicoUSA
  2. 2.Biological Computation Group, Microsoft ResearchCambridgeUK
  3. 3.Center for Biomedical EngineeringUniversity of New MexicoUSA

Personalised recommendations