Holistic Approach to Reducing CO2 Emissions Along the Energy-Chain (E-Chain)

  • M. BornschleglEmail author
  • M. Drechsel
  • S. Kreitlein
  • J. Franke
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)


Due to the increasing awareness to reduce CO2 emissions, it is important that car producers (OEM) get transparency about their energy consumption. Especially the production emission is becoming a focus topic in the next years. Hence, it should be started to minimize the energy consumption in a sustainable way. Therefore, this chapter presents a new approach to design a sustainable Energy Chain, which considers all elements beginning from the energy supplier to the end customer. Additionally the energy consumption is assessed, whether it is value-adding or not. This helps to find the levers to reduce energy consumption without reducing the level of quality and quantity. For the implementation of the Energy Chain a suitable software architecture is necessary. This chapter shows possible software modules for energy planning.


Supply Chain Management Resistance Spot Welding International Energy Agency Energy Supplier Chain Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Christopher M (2005) Logistics and supply chain management—Creating Value-Adding Networks, 3rd edn. Pearson Education, HarlowGoogle Scholar
  2. Dao V, Langella I, Carbo J (2011) From green to sustainability: Information Technology and an integrated sustainability framework. In. J Strateg Inf Syst 20(1):63–79CrossRefGoogle Scholar
  3. Despeisse M, Ball PD, Evans S, Levers A (2012) Industrial ecology at factory level a conceptual model. J Clean Prod 31:30–39CrossRefGoogle Scholar
  4. Energy management systems (2011) Requirements with guidance for use (ISO 50001:2011), German version EN ISO 50001:2011, Beuth, BerlinGoogle Scholar
  5. Erlach K, Westkämper E (2009) Energiewertstrom-Der Weg zur energieeffizienten Fabrik. Fraunhofer Verlag, StuttgartGoogle Scholar
  6. International Energy Agency (2012) World energy outlook 2012. OECD, ParisGoogle Scholar
  7. Lovins AB (1976) Energy strategy: The road not taken? In: Foreign AffairsGoogle Scholar
  8. Matten D, Crane A (2005) Corporate citizenship: toward an extended theoretical conceptualization. Acad Manag 30(1):166–179CrossRefGoogle Scholar
  9. Meyer H, Bornschlegl M (2012) Intelligentes energiemanagement von produktionsanlagen. In SPS Magazin 6:44–46Google Scholar
  10. Mock P (2010) Entwicklung eines szenariomodells zur simulation der zukünftigen marktanteile und CO2-emissionen von kraftfahrzeugen (VECTOR21). Dissertation, Dt. Zentrum für Luft- und Raumfahrt, StuttgartGoogle Scholar
  11. Reinhart G, Reinhardt S, Gral M (2012) Energieflexible produktionssysteme, wt Werkstattstechnik 102(9):622–628Google Scholar
  12. Thamling N, Seefeldt F, Glöckner U (2010) Rolle und bedeutung von energieeffizienz und energiedienstleistungen in KMU, prognos, BerlinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Bornschlegl
    • 1
    Email author
  • M. Drechsel
    • 1
  • S. Kreitlein
    • 2
  • J. Franke
    • 2
  1. 1.Audi Planung GmbHIngolstadtGermany
  2. 2.Institute for Factory Automation and Production Systems (FAPS)Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations