Spatiotemporal Co-occurrence Rules

  • Karthik Ganesan Pillai
  • Rafal A. Angryk
  • Juan M. Banda
  • Tim Wylie
  • Michael A. Schuh
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 241)

Abstract

Spatiotemporal co-occurrence rules (STCORs) discovery is an important problem in many application domains such as weather monitoring and solar physics, which is our application focus. In this paper, we present a general framework to identify STCORs for continuously evolving spatiotemporal events that have extended spatial representations. We also analyse a set of anti-monotone (monotonically non-increasing) and non anti-monotone measures to identify STCORs. We then validate and evaluate our framework on a real-life data set and report results of the comparison of the number candidates needed to discover actual patterns, memory usage, and the number of STCORs discovered using the anti-monotonic and non anti-monotonic measures.

Keywords

spatiotemporal events extended spatial representations spatiotemporal co-occurrence rules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Cao, H., Mamoulis, N., Cheung, D.W.: Discovery of collocation episodes in spatiotemporal data. In: The 6th Intern. Conf. on Data Mining, DC, pp. 823–827 (2006)Google Scholar
  3. 3.
    Celik, M., Shekhar, S., Rogers, J.P., Shine, J.A., Yoo, J.S.: Mixed-drove spatio-temporal co-occurence pattern mining: A summary of results. In: The 6th Intern. Conf. on Data Mining, DC, pp. 119–128 (2006)Google Scholar
  4. 4.
    Egghe, L., Michel, C.: Strong similarity measures for ordered sets of documents in information retrieval. Inf. Process. Manag. 38(6), 823–848 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    HEK (January 2012), http://www.lmsal.com/isolsearch
  6. 6.
    Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial data sets: a general approach. Trans. on Know. and Data Eng., 1472–1485 (2004)Google Scholar
  7. 7.
    Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)MATHGoogle Scholar
  8. 8.
    Patel, D.: Interval-orientation patterns in spatio-temporal databases. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 416–431. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Pillai, K.G., Angryk, R.A., Banda, J.M., Schuh, M.A., Wylie, T.: Spatio-temporal co-occurrence pattern mining in data sets with evolving regions. In: ICDM Workshops, pp. 805–812 (2012)Google Scholar
  10. 10.
    Schuh, M.A., Angryk, R.A., Pillai, K.G., Banda, J.M., Martens, P.C.: A large-scale solar image dataset with labeled event regions. In: Int. Conf. on Image Processing, ICIP (2013)Google Scholar
  11. 11.
    Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2005)Google Scholar
  12. 12.
    Taylor, P.: Quantitative Methods in Geography: An Introduction to Spatial Analysis. Houghton Mifflin (1977)Google Scholar
  13. 13.
    Wang, J., Hsu, W., Lee, M.L.: A framework for mining topological patterns in spatio-temporal databases. In: CIKM 2005, pp. 429–436. ACM, New York (2005)Google Scholar
  14. 14.
    Xiong, H., Shekhar, S., Huang, Y., Kumar, V., Ma, X., Yoo, J.S.: A framework for discovering co-location patterns in data sets with extended spatial objects. In: SDM (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Karthik Ganesan Pillai
    • 1
  • Rafal A. Angryk
    • 1
  • Juan M. Banda
    • 1
  • Tim Wylie
    • 1
  • Michael A. Schuh
    • 1
  1. 1.Montana State UniversityBozemanUSA

Personalised recommendations