Advertisement

Dynamic Compression Strategy for Time Series Database Using GPU

  • Piotr Przymus
  • Krzysztof Kaczmarski
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 241)

Abstract

Nowadays, we can observe increasing interest in processing and exploration of time series. Growing volumes of data and needs of efficient processing pushed research in new directions. GPU devices combined with fast compression and decompression algorithms open new horizons for data intensive systems. In this paper we present improved cascaded compression mechanism for time series databases build on Big Table–like solution. We achieved extremely fast compression methods with good compression ratio.

Keywords

time series database lightweight lossless compression GPU CUDA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apache HBase (2013), http://hbase.apache.org
  2. 2.
    ParStream - website (2013), https://www.parstream.com
  3. 3.
    TempoDB – Hosted time series database service (2013), https://tempo-db.com/
  4. 4.
    Boncz, P.A., Zukowski, M., Nes, N.: Monetdb/x100: Hyper-pipelining query execution. In: CIDR, pp. 225–237 (2005)Google Scholar
  5. 5.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data. In: OSDI 2006: Seventh Symposium on Operating System Design and Implementation, Seattle, WA, pp. 205–218 (November 2006)Google Scholar
  6. 6.
    Cloudkick. 4 months with cassandra, a love story (March 2010), https://www.cloudkick.com/blog/2010/mar/02/4_months_with_cassandra/
  7. 7.
    Delbru, R., Campinas, S., Samp, K., Tummarello, G.: Adaptive frame of reference for compressing inverted lists. Technical report, DERI – Digital Enterprise Research Institute (December 2010)Google Scholar
  8. 8.
    Fang, W., He, B., Luo, Q.: Database compression on graphics processors. Proceedings of the VLDB Endowment 3(1-2), 670–680 (2010)Google Scholar
  9. 9.
    Fink, E., Gandhi, H.S.: Compression of time series by extracting major extrema. J. Exp. Theor. Artif. Intell. 23(2), 255–270 (2011)CrossRefGoogle Scholar
  10. 10.
    Lees, M., Ellen, R., Steffens, M., Brodie, P., Mareels, I., Evans, R.: Information infrastructures for utilities management in the brewing industry. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012 Workshops. LNCS, vol. 7567, pp. 73–77. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    OpenTSDB. Whats opentsdb (2010-2012), http://opentsdb.net/
  12. 12.
    Przymus, P., Kaczmarski, K.: Improving efficiency of data intensive applications on GPU using lightweight compression. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012 Workshops. LNCS, vol. 7567, pp. 3–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Przymus, P., Rykaczewski, K., Wiśniewski, R.: Application of wavelets and kernel methods to detection and extraction of behaviours of freshwater mussels. In: Kim, T.-h., Adeli, H., Slezak, D., Sandnes, F.E., Song, X., Chung, K.-i., Arnett, K.P. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 43–54. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized document ordering. In: Proc. of the 18th Intern. Conf. on World Wide Web, pp. 401–410. ACM (2009)Google Scholar
  15. 15.
    Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar ram-cpu cache compression. In: ICDE 2006. Proc. of the 22nd Intern. Conf. on Data Engineering, p. 59. IEEE (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Nicolaus Copernicus UniversityTorunPoland
  2. 2.Warsaw University of TechnologyWarsawPoland

Personalised recommendations