Sound Generation in Plane Couette Flow: A Failure of Lighthill’s Analogy

  • Jan-Niklas Hau
  • George Chagelishvili
  • George Khujadze
  • Martin Oberlack
  • Alexander Tevzadze
Part of the Springer Proceedings in Physics book series (SPPHY, volume 149)

Abstract

The linearmechanism of acoustic wave generation by initially pure vortex perturbations embedded in a two-dimensional, inviscid and unboundedCouette flow is investigated by Kelvin-mode analysis and direct numerical simulations (DNS). Our results show a misleading representation of the linear sources of aerodynamic sound generation by Lighthill’s acoustic analogy approach, not taking the strong anisotropy of the linear generation of acoustic waves by pure vortex mode perturbations in non-normal shear flow systems into account. DNS confirm the importance of linear sound production in the range of validity of rapid distortion theory (RDT), herein being superior compared to the nonlinear mechanism despite the common opinion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chagelishvili, G.D., Tevzadze, A., Bodo, G., Moiseev, S.S.: Linear Mechanism of Wave Emergence from Vortices in Smooth Shear Flows. Phys. Rev. Lett. 79, 3178–3181 (1997)CrossRefGoogle Scholar
  2. 2.
    Goldstein, M.E.: On Identifying The True Sources of Aerodynamic Sound. J. Fluid Mech. 526, 337–347 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Lighthill, M.J.: On Sound Generated Aerodynamically – I. General theory. Proc. R. Soc. Lon. Ser.-A 211, 564–587 (1952)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Lighthill, M.J.: On Sound Generated Aerodynamically – II. Turbulence as a Source of Sound. Proc. R. Soc. Lon. Ser.-A 222, 1–32 (1954)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Lilley, G.M.: On the Noise From Jet. In: AGARD Conference Proceedings No.131 on Noise Mechanisms, Brussels, Belgium (1974)Google Scholar
  6. 6.
    Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., Ferrari, A.: PLUTO: A Numerical Code for Computational Astrophysics. Astrophys. J. Suppl. Ser. 170, 228–242 (2007)CrossRefGoogle Scholar
  7. 7.
    Phillips, M.O.: On the Generation of Sound by Supersonic Turbulent Shear Layers. J. Fluid Mech. 9, 1–28 (1960)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Powell, A.: Theory of Vortex Sound. J. Acoust. Soc. Am. 36, 177–195 (1964)CrossRefGoogle Scholar
  9. 9.
    Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Applied Mathematical Sciences, vol. 142, pp. 337–347 (2001)Google Scholar
  10. 10.
    Simone, A., Coleman, G.N., Cambon, C.: The Effect of Compressibility on Turbulent Shear FLow: A Rapid-Distortion-Theory and Direct-Numerical-Simulation Study. Proc. R. Soc. Lon. Ser.-A 330, 307–338 (1997)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jan-Niklas Hau
    • 1
  • George Chagelishvili
    • 2
    • 3
  • George Khujadze
    • 1
  • Martin Oberlack
    • 1
  • Alexander Tevzadze
    • 4
  1. 1.Chair of Fluid DynamicsTU DarmstadtDarmstadtGermany
  2. 2.E. Kharadze Abastumani Astrophysical ObservatoryIlia State UniversityTbilisiGeorgia
  3. 3.Georgia & M. Nodia Institute of GeophysicsTbilisi State UniversityTbilisiGeorgia
  4. 4.Faculty of Exact and Natural SciencesJavakhishvili Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations