Towards Service Science: Recent Developments and Applications

  • Katarzyna CieślińskaEmail author
  • Jolanta Mizera-Pietraszko
  • Abdulhakim F. Zantuti
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 240)


The study reports some of the most significant advances in the field of Service Science. In particular, discussed are: Service Composition, Knowledge Engineering and Resource Allocation. We focus on the following applications of service-based systems: eHealth, eLearning and Social Networks.


Service Science Service Systems SOA e-Health eLearning systems Social Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barile, S., Polese, F.: Smart Service Systems and Viable Service Systems: Applying Systems Theory to Service Science. Smart Service Systems and Viable Service Systems Service Science 2, 21–40 (2010)Google Scholar
  2. 2.
    Bell, D.: The Coming of Post-Industrial Society. The Educational Forum 40(4), 574–579 (1976)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Maglio, P., Spohrer, J.: Fundamentals of service science. Journal of the Academy of Marketing Science 36, 18–20 (2008)CrossRefGoogle Scholar
  5. 5.
    Spohrer, J., Maglio, P., Gruhl, D.: Steps toward a science of service systems. Computer 40, 71–77 (2007)CrossRefGoogle Scholar
  6. 6.
    Clavier, P., Lotriet, H., van Loggerenberg, J.: Business Intelligence Challenges in the Context of Goods- and Service-Dominant Logic, Maui, HI, pp. 4138–4147 (2012)Google Scholar
  7. 7.
    Vargo, S., Lusch, R.: Evolving to a New Dominant Logic for Marketing. Journal of Marketing 68, 1–17 (2004)CrossRefGoogle Scholar
  8. 8.
    Vargo, S., Lusch, R.: Service-dominant logic: continuing the evolution. Journal of the Academy 36, 1–10 (2008)Google Scholar
  9. 9.
    Vargo, S., Lusch, R.: The Service-Dominant Logic of Marketing: Dialog, Debate, and Directions. M.E. Sharpe, Armonk (2006)Google Scholar
  10. 10.
    Spohrer, J., Kwan, S.: Service Science, Management, Engineering, and Design (SSMED): An Emerging Discipline - Outline & References. Journal of Information Systems in the Service Sector (IJISSS) 1(3), 39 (2009)Google Scholar
  11. 11.
    Maglio, P., Srinivasan, S., Kreulen, J., Spohrer, J.: Service systems, service scientists, SSME, an innovation. Communications of the ACM 49, 81–85 (2006)CrossRefGoogle Scholar
  12. 12.
    Ng, I.C.L., Maull, R.: Embedding the New Discipline of Service Science: A Service Science Research Agenda. In: Powell, L., Shi, L., Warren, B. (eds.) IEEE International Conference on Service Operations, Chicago (2009)Google Scholar
  13. 13.
    Papazoglou, M., Georgakopoulos, D.: Service-Oriented Computing. Communication of the ACM 46(10), 25–28 (2003)CrossRefGoogle Scholar
  14. 14.
    Qiu, R., Fang, Z., Shen, H., Yu, M.: Towards service science, engineering and practice. International Journal of Services Operations and Informatics 2(2), 103–113 (2007)CrossRefGoogle Scholar
  15. 15.
    Spohrer, J., Anderson, L., Pass, N., Ager, T.: Service Science e Service Dominant Logic. Otago Forum 2, 4–18 (2008)Google Scholar
  16. 16.
    Spohrer, J., Vargo, S., Maglio, P., Caswell, N.: The service system is the basic abstraction of service science. In: HICSS Conference (2008)Google Scholar
  17. 17.
    Vargo, S.L., Maglio, P.P., Akaka, M.A.: On value and value co-creation: a service systems and service logic perspectiv. European Management Journal 26(3), 145–152 (2008)CrossRefGoogle Scholar
  18. 18.
    Alter, S.: Challenges for Service Science. Journal of Information Technology Theory and Application (JITTA) 13(3), Article 3 (2012)Google Scholar
  19. 19.
    Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Jong Myoung, K., Chang Ouk, K., Ick-Hyun, K.: Quality-of-service oriented web service omposition algorithm and planning architecture. The Journal of Systems and Software 81(11), 2079–2090 (2008)CrossRefGoogle Scholar
  22. 22.
    Stelmach, P., Świątek, P., Falas, Ł., Schauer, P., Kokot, A., Demkiewicz, M.: Planning-Based Method for Communication Protocol Negotiation in a Composition of Data Stream Processing Services. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 531–540. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Fraś, M., Grzech, A., Juszczyszyn, K., Kołaczek, G., Kwiatkowski, J., Prusiewicz, A., Sobecki, J., Świątek, P., Wasilewski, A.: Smart Work Workbench; Integrated Tool for IT Services Planning, Management, Execution and Evaluation. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 557–571. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Grzech, A., Świątek, P.: Complex Services Availability in Service Oriented Systems. In: 2011 21st International Conference on Systems Engineering (ICSEng), pp. 227–232 (2011)Google Scholar
  25. 25.
    Grzech, A., Rygielski, P., Świątek, P.: Translations of service level agreement in systems based on service-oriented architectures. Cybernetics and Systems: An International Journal 41(8), 610–627Google Scholar
  26. 26.
    Grzech, A., Świątek, P.: Modeling and optimization of complex services in service-based systems. Cybernetics and Systems: An International Journal 40(8), 706–723Google Scholar
  27. 27.
    Rygielski, P., Świątek, P.: Graph-fold: an efficient method for complex service execution plan optimization. Service Science 38(3), 25–32 (2010)Google Scholar
  28. 28.
    Klusch, M., Fries, B., Sycara, K.: OWLS-MX: A hybrid Semantic Web service matchmaker for OWL-S services. Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 121–133 (2009)Google Scholar
  29. 29.
    Cena, F., Furnari, R.: Discovering and Exchanging Information about Users in a SOA. Communication of SIWN - Systemics and Informatics World Net 4(3), 34–38 (2008)Google Scholar
  30. 30.
    Karakoc, E., Senkul, P.: Composing semantic Webservices under constraints. Expert Systems with Applications, 11021–11029 (2009)Google Scholar
  31. 31.
    Falas, Ł., Stelmach, P.: Web Service Composition with Uncertain Non-functional Parameters. In: Camarinha-Matos, L.M., Tomic, S., Graç, P. (eds.) Technological Innovation for the Internet of Things, Costa de Caparica, pp. 45–52 (2013)Google Scholar
  32. 32.
    Wiesemann, W., Hochreiter, R., Kuhn, D.: A Stochastic Programming Approach for qosaware Service Composition. In: Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid, Lyon (2008)Google Scholar
  33. 33.
    Hwang, S., Wang, H., Tang, J., Srivastava, J.: A Probabilistic Approach to Modeling and Estimating the QoS of Web-services-based Workflows. Journal of Information Sciences (INS) 177(23), 5484–5503 (2007)CrossRefzbMATHGoogle Scholar
  34. 34.
    Bhowan, U., Johnston, M., Zhang: Developing New Fitness Functions in Genetic Programming. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(2), 406–421 (2011)CrossRefGoogle Scholar
  35. 35.
    Tomczak, J.M., Cieślińska, K., Pleszkun, M.: Development of Service Composition by Applying ICT Service Mapping. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 45–54. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  36. 36.
    Kohavi, R.: The Power of Decision Tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)Google Scholar
  37. 37.
    Pawlak, Z.: Rough set theory and its applications. J. of Telecom. Inf. Tech. 3, 7–10 (2002)Google Scholar
  38. 38.
    Świątek, P., Stelmach, P., Prusiewicz, A., Juszczyszyn, K.: Service composition in knowledge-based SOA systemsGoogle Scholar
  39. 39.
    Feigenbaum, E., McCorduck, P.: The fifth generation, 1st edn. Addison-Wesley, Reading (1983)Google Scholar
  40. 40.
    Prusiewicz, A., Zięba, M.: On some method for limited services selection. International Journal of Intelligent Information and Database Systems 5(5), 493–509 (2011)CrossRefGoogle Scholar
  41. 41.
    Prusiewicz, A., Stelmach, P.: An improved method for services selection. In: Grzech, A., Świątek, P., Brzostowski, K. (eds.) Applications of Systems Science. Exit, Warsaw (2010)Google Scholar
  42. 42.
    Zięba, M., Świątek, J.: Various methods of combining classifiers for ensemble algorithms. Applications of System Science 91(1), 81 (2010)Google Scholar
  43. 43.
    Tomczak, J., Zięba, M.: On-line bayesian context change detection in web service systems. In: HotTopiCS 2013. Proceedings of the 2013 International Workshop on Hot Topics in Cloud, pp. 3–10 (2013)Google Scholar
  44. 44.
    Prusiewicz, A., Zięba, M.: Services Recommendation in Systems Based on Service Oriented Architecture by Applying Modified ROCK Algorithm. In: Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E. (eds.) NDT 2010, Part II. CCIS, vol. 88, pp. 226–238. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  45. 45.
    Huang, G., Tian, Y., Chang.: A knowledge representation architecture for remote sensing image understanding systems. In: 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC), vol. 1, pp. 202–205 (2011)Google Scholar
  46. 46.
    Hu-Chen, L., Long, L., Qing-Lian, L., Nan, L.: Knowledge Acquisition and Representation Using Fuzzy Evidential Reasoning and Dynamic Adaptive Fuzzy Petri Nets. IEEE Transactions on Cybernetics 43(3), 1059–1072 (2013)CrossRefGoogle Scholar
  47. 47.
    Świątek, P., Grzech, A., Rygielski, P.: Adaptive packet scheduling for requests delay guaranties in packet-switched computer communication network. Systems Science 36(1), 7–12 (2010)MathSciNetGoogle Scholar
  48. 48.
    Świątek, P., Drwal, M., Grzech, A.: Providing strict QoS guaranties for flows with time-varying capacity requirements. In: 21st International Conference on Systems Engineering (ICSEng), pp. 279–284 (2011)Google Scholar
  49. 49.
    Grzech, A., Świątek, P.: The influence of load prediction methods on the quality of service of connections in the multiprocessor. Systems Science 35(3), 7–14 (2009)MathSciNetGoogle Scholar
  50. 50.
    Tomczak, J.M.: On-line change detection for resource allocation in service-oriented systems. In: Camarinha-Matos, L.M., Shahamatnia, E., Nunes, G. (eds.) DoCEIS 2012. IFIP AICT, vol. 372, pp. 51–58. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  51. 51.
    Rygielski, P., Tomczak, J.M.: Context change detection for resource allocation in service-oriented systems. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II. LNCS, vol. 6882, pp. 591–600. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  52. 52.
    Sebastião, R., Gama, J., Rodrigues, P.P., Bernardes, J.: Monitoring Incremental Histogram Distribution for Change Detection in Data Streams. In: Gaber, M.M., Vatsavai, R.R., Omitaomu, O.A., Gama, J., Chawla, N.V., Ganguly, A.R. (eds.) Sensor-KDD 2008. LNCS, vol. 5840, pp. 25–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  53. 53.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2009)Google Scholar
  54. 54.
    Song, Y., Sun, Y., Shi, W.: A Two-Tiered On-Demand Resource Allocation Mechanism for VM-Based Data Centers. IEEE Transactions on Services Computing 6(1), 116–129 (2013)CrossRefGoogle Scholar
  55. 55.
    Świątek, P., Rygielski, P., Juszczyszyn, K., Grzech, A.: User Assignment and Movement Prediction in Wireless Networks. Cybernetics and Systems: An International Journal 43(4), 340–353 (2012)CrossRefGoogle Scholar
  56. 56.
    Grzech, A., Świątek, P.: Parallel processing of connection streams in nodes of packet-switched computer communication systems. Cybernetics and Systems: An International Journal 39(2), 155–170 (2008)CrossRefzbMATHGoogle Scholar
  57. 57.
    Varshney, U.: Pervasive healthcare and wireless health monitoring. Mobile Networks and Applications 12, 113–127 (2007)CrossRefGoogle Scholar
  58. 58.
    Meingast, M., Roosta, T., Sastry, S.: Security and privacy issues with health care information technology. In: Proc. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, pp. 5053–5058 (2006)Google Scholar
  59. 59.
    Halperin, D., Heydt-Benjamin, T., Fu, K., Kohno, T.: Security and privacy for implantable medical devices. Pervasive Computing 7, 30–39 (2008)CrossRefGoogle Scholar
  60. 60.
    Grzech, A., Świątek, P., Rygielski, P.: Dynamic Resources Allocation for Delivery of Personalized Services. In: Cellary, W., Estevez, E. (eds.) Software Services for e-World. IFIP AICT, vol. 341, pp. 17–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  61. 61.
    Guo, L., Zhang, C., Sun, J., Fang, Y.: PAAS: A Privacy-Preserving Attribute-Based Authentication System for eHealth Networks. In: IEEE 32nd International Conference on Distributed Computing Systems, ICDCS (2012)Google Scholar
  62. 62.
    Lin, X., Lu, R., Shen, X., Nemoto, Y., Kato, N.: Sage: A Strong Privacy-Preserving Scheme Against Global Eavesdropping for ehealth Systems. IEEE Journal on Selected Areas in Communications 27(4) (2009)Google Scholar
  63. 63.
    Świątek, P., Juszczyszyn, K., Brzostowski, K., Drapała, J., Grzech, A.: Supporting Content, Context and User Awareness in Future Internet Applications. In: Álvarez, F., et al. (eds.) FIA 2012. LNCS, vol. 7281, pp. 154–165. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  64. 64.
    Brzostowski, K., Drapała, J., Grzech, A., Świątek, P.: Adaptive Decision Support System for Automatic. Cybernetics and Systems: An International Journal 44(23), 204–221 (2013)CrossRefGoogle Scholar
  65. 65.
    Tomczak, J., Gonczarek, A.: Decision rules extraction from data stream in the presence of changing context for diabetes treatment. Knowledge and Information Systems 34(3), 521–546 (2013)CrossRefGoogle Scholar
  66. 66.
    Świątek, J., Brzostowski, K., Tomczak, J.: Computer aided physician interview for remote control system of diabetes therapy. In: Józefczyk, J., Lasker, G., Tecumseh (eds.) 23rd International Conference on System Research, Informatics and Cybernetics, Baden- Baden, Germany, pp. 8–13 (August 2011)Google Scholar
  67. 67.
    Harries, M.: Splice-2 comparative evaluation: electricity pricing. Technical Report UNSW-CSE-TR-9905Google Scholar
  68. 68.
    Kahn, M.: UCI Machine Learning Repository,
  69. 69.
    Kukla, E., Nguyen, N., Sobecki, J., Danilowicz, C., Lenar, M.: A model conception for optimal scenario determination in an intelligent learning system. ITSE -International Journal of Interactive Technology and Smart Education 1(3), 171–184 (2004)CrossRefGoogle Scholar
  70. 70.
    Kozierkiewicz-Hetmańska, A.: A method for scenario recommendation in intelligent e-learning systems. Cybernetics and Systems: An International Journal 42(2), 82–99 (2011)CrossRefGoogle Scholar
  71. 71.
    Hofmann, T.: Probabilistic Latent Semantic Analysis. In: Proc. 15th Conf. Uncertainty in Artificial Intelligence, pp. 289–296 (1999)Google Scholar
  72. 72.
    Rocchio, J.: SMART Retrieval System Experiments in Automatic Document Processing. In: Salton G. (ed.) Relevance Feedback in Information Retrieval, ch. 14. Prentice-Hall (1971)Google Scholar
  73. 73.
    Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating Word of Mouth. In: Proc. Conf. Human Factors in Computing Systems (1995)Google Scholar
  74. 74.
    Balabanovic, M., Shoham, Y.: Fab: Content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  75. 75.
    Adomavicius, G., Tuzhilin, A.: Towards the Next Generation of Recommender Systems: A Survey ofthe State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  76. 76.
    Herlocker, J., Konstan, J., Riedl, J.: Explaining Collaborative Filtering Recommendations. In: Proceedings Conf. Computer Supported Cooperative Work. ACM (2000)Google Scholar
  77. 77.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval Journal 4(2), 133–151 (2001)CrossRefzbMATHGoogle Scholar
  78. 78.
    Sarwar, B., Karypis, Konstan, J., Riedl, J.: Item-Based Collaborative Filtering Recommendation Algorithms. In: Proc. 10th Int’l. WWW Conf. (2001)Google Scholar
  79. 79.
    Ramakrishnan, N., Keller, B., Mirza, B., Grama, A., Karypis, G.: Privacy Risks in Recommender Systems. IEEE Internet Computing 5(6), 54–62 (2001)CrossRefGoogle Scholar
  80. 80.
    Sobecki, J., Tomczak, J.M.: Student Courses Recommendation Using Ant Colony Optimization. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010, Part II. LNCS (LNAI), vol. 5991, pp. 124–133. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  81. 81.
    Tomczak, J.M., Świątek, J.: Personalisation in Service-Oriented Systems Using Markov Chain Model and Bayesian Inference. In: Camarinha-Matos, L.M. (ed.) DoCEIS 2011. IFIP AICT, vol. 349, pp. 91–98. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  82. 82.
    Tomczak, J., Świątek, J., Brzostowski, K.: Bayesian classifiers with incremental learning for nonstationary datastreams. In: Grzech, A., Świątek, P., Drapała, J. (eds.) Advances in Systems Science. Exit, Warsaw (2010)Google Scholar
  83. 83.
    Juszczyszyn, K., Gonczarek, A., Tomczak, J., Musiał, K., Budka, M.: A Probabilistic Approach to Structural Change Prediction in Evolving Social Networks. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 996–1001 (2012)Google Scholar
  84. 84.
    Grzech, A., Juszczyszyn, K., Stelmach, P., Falas, Ł.: Link prediction in dynamic networks of services emerging during deployment and execution of web services. In: Nguyen, N.-T., Hoang, K., Jędrzejowicz, P. (eds.) ICCCI 2012, Part II. LNCS, vol. 7654, pp. 109–120. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Katarzyna Cieślińska
    • 1
    Email author
  • Jolanta Mizera-Pietraszko
    • 1
  • Abdulhakim F. Zantuti
    • 2
  1. 1.Institute of Computer ScienceWroclaw University of TechnologyWroclawPoland
  2. 2.Faculty of EngineeringZaytona UniversityTripoliLibya

Personalised recommendations