Advertisement

From Moodle Log File to the Students Network

  • Kateřina Slaninová
  • Jan Martinovič
  • Pavla Dráždilová
  • Václav Snašel
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 239)

Abstract

E-learning is a method of education which usually uses Learning Management Systems and internet environment to ensure the maintenance of courses and to support the educational process. Moodle, one of such systems widely used, provides several statistical tools to analyse students’ behaviour in the system. However, none of these tools provides visualisation of relations between students and their clustering into groups based on their similar behaviour. This article presents a proposed approach for analysis of students’ behaviour in the system based on their profiles and on the students’ profiles similarity. The approach uses principles from process mining and the visualization of relations between students and groups of students is done by graph theory.

Keywords

e-Learning Students’ Behaviour User Profiles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berry, M.: Survey of Text Mining: Clustering, Classification, and Retrieval. Springer (September 2003)Google Scholar
  2. 2.
    Chen, J., Huang, K., Wang, F., Wang, H.: E-learning behavior analysis based on fuzzy clustering. In: Proceedings of International Conference on Genetic and Evolutionary Computing (2009)Google Scholar
  3. 3.
    Ding, C.H.Q., He, X., Zha, H., Gu, M., Simon, H.D.: A min-max cut algorithm for graph partitioning and data clustering. In: ICDM 2001: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 107–114. IEEE Computer Society, Washington, DC (2001)CrossRefGoogle Scholar
  4. 4.
    Dráždilová, P., Babsková, A., Martinovič, J., Slaninová, K., Minks, S.: Method for identification of suitable persons in collaborators’ networks. In: CISIM, pp. 101–110 (2012)Google Scholar
  5. 5.
    Dráždilová, P., Martinovič, J., Slaninová, K.: Spectral clustering: Left-right-oscillate algorithm for detecting communities. In: Pechenizkiy, M., Wojciechowski, M. (eds.) New Trends in Databases & Inform. AISC, vol. 185, pp. 285–294. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Dráždilová, P., Obadi, G., Slaninová, K., Al-Dubaee, S., Martinovič, J., Snášel, V.: Computational intelligence methods for data analysis and mining of eLearning activities. In: Xhafa, F., Caballé, S., Abraham, A., Daradoumis, T., Juan Perez, A.A. (eds.) Computational Intelligence for Technology Enhanced Learning. SCI, vol. 273, pp. 195–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice Hall (2003)Google Scholar
  8. 8.
    El-halees, A.: Mining students data to analyze learning behavior: a case study (2008)Google Scholar
  9. 9.
    Hershkovitz, A., Nachmias, R.: Learning about online learning processes and students’ motivation through web usage mining. Interdisciplinary Journal of E-Learning and Learning Objects 5, 197–214 (2009)Google Scholar
  10. 10.
    Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, bad and spectral. J. ACM 51(3), 497–515 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press (2010)Google Scholar
  12. 12.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks (February 2004)Google Scholar
  13. 13.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st edn. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. Comput. Supported Coop. Work 14(6), 549–593 (2005)CrossRefGoogle Scholar
  15. 15.
    Yang, F., Shen, R., Han, P.: Construction and application of the learning behavior analysis center based on open e-learning platform (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kateřina Slaninová
    • 1
  • Jan Martinovič
    • 2
  • Pavla Dráždilová
    • 1
  • Václav Snašel
    • 2
  1. 1.Faculty of Electrical EngineeringVŠB Technical University in OstravaOstravaCzech Republic
  2. 2.IT4 InnovationsVŠB Technical University in OstravaOstravaCzech Republic

Personalised recommendations