Geometry of General Serial Robots

  • Jorge Angeles
Part of the Mechanical Engineering Series book series (MES, volume 124)


Current serial robots, encountered not only in research laboratories but also in production or construction environments, include features that deserve a chapter apart. We will call here general serial robots all non-redundant serial robots that do not fall in the category of those studied in Chap. 4. Thus, the chapter is devoted to manipulators of the serial type that do not allow a decoupling of the positioning and the orientation problems. The focus of the chapter is, thus, the inverse displacement problem (IDP) of general six-revolute robots. While redundant manipulators of the serial type fall within this category as well, we will leave these aside, for their redundancy resolution calls for a more specialized background than what we have either assumed or given here.


Joint Angle Scalar Equation Kinematic Chain Joint Variable Overdetermined System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

(AVI 13,959 kb) (931 kb)
(ZIP 932 kb)
44106_4_En_9_MOESM3_ESM.pdf (100 kb)
(PDF 101 kb)


  1. Albala, H., 1982, “Displacement analysis of the N-bar, single-loop, spatial linkage. Part I: Underlying mathematics and useful tables”, and “Part II: Basic displacement equations in matrix and algebraic form”, ASME J. Mechanical Design 104, pp. 504–519, 520–525.Google Scholar
  2. Alizade, R.A., Duffy, J., and Hajiyev, E.T., 1983, “Mathematical models for analysis and synthesis of spatial mechanism. Part IV: Seven-link spatial mechanisms”, Mechanism and Machine Theory 18, no. 5, pp. 323–328.CrossRefGoogle Scholar
  3. Angeles, J., 1985, “On the numerical solution of the inverse kinematic problem”, The Int. J.  Robotics Res. 4, no. 2, pp. 21–37.CrossRefGoogle Scholar
  4. Angeles, J., 2005, “The degree of freedom of parallel robots: a group-theoretic approach,” Proc. IEEE International Conference on Robotics & Automation, Barcelona, Spain, April 18–22, pp. 1017–1024.Google Scholar
  5. Angeles, J. and Etemadi Zanganeh, K., 1992, “The semigraphical solution of the direct kinematics of general platform manipulators,” Proc. ISRAM ’92. Fourth International Symposium on Robotics and Manufacturing, Nov. 11–13, Santa Fe, Vol. 4, pp. 5–52.Google Scholar
  6. Angeles, J. and Etemadi Zanganeh, K., 1992a, “The semigraphical determination of all inverse kinematic solutions of general six-revolute manipulators”, Proc.  9th CISM-IFToMM Symp.on Theory and Practice of Robots and Manipulators, Sept. 1–4, Udine, pp. 23–32.Google Scholar
  7. Angeles, J. and Etemadi Zanganeh, K., 1992b, “The semigraphical solutions of the direct kinematics of general platform manipulators”, Proc. 4th Int. Symp. Robotics and Manufacturing, Nov. 11–13, Santa Fe, vol. 4, pp. 45–52.Google Scholar
  8. Angeles, J., Hommel, G., and Kovács, P., 1993, Computational Kinematics, Kluwer Academic Publishers, Dordrecht.CrossRefzbMATHGoogle Scholar
  9. Bricard, R., 1927, Leçons de Cinématique, Gauthier-Villars, Paris.zbMATHGoogle Scholar
  10. Dahlquist, G. and Björck, Å., 1974, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ.zbMATHGoogle Scholar
  11. Duffy, J. and Crane, C., 1980, “A displacement analysis of the general spatial 7-link, 7R mechanism”, Mechanism and Machine Theory 15, no. 3, pp. 153–169.CrossRefGoogle Scholar
  12. Duffy, J. and Derby, S., 1979, “Displacement analysis of a spatial 7R mechanism—A generalized lobster’s arm”, ASME J. Mechanical Design 101, pp. 224–231.CrossRefGoogle Scholar
  13. Forsythe, G.E., 1970, “Pitfalls in computation, or why a math book isn’t enough”, American Mathematical Monthly 27, pp. 931–956.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Golub, G.H. and Van Loan, C.F., 1989, Matrix Computations, The Johns Hopkins University Press, Baltimore.zbMATHGoogle Scholar
  15. Husty, M.L., Pfurner, M. and Schröcker, H.-P., 2007, “A new and efficient algorithm for the inverse kinematics of a general 6R manipulator,” Mechanism and Machine Theory, Vol. 42, No. 1, pp. 66–81.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Lee, H.Y. and Liang, C.G., 1988, “Displacement analysis of the general spatial seven-link 7R mechanism”, Mechanism and Machine Theory 23, no. 3, pp. 219–226.CrossRefGoogle Scholar
  17. Li, H., 1990, Ein Verfahren zur vollständigen Lösung der Rückwärtstransformation für Industrieroboter mit allgemeiner Geometrie, doctoral thesis, Universität-Gesamthochschule Duisburg, Duisburg.Google Scholar
  18. Li, H., Woernle, C., and Hiller, M., 1991, “A complete solution for the inverse kinematic problem of the general 6R robot manipulator”, ASME J. Mechanical Design 113, pp. 481–486.CrossRefGoogle Scholar
  19. Livio, M., 2005, The Equation That Couldn’t Be Solved. How Mathematical Genius Discovered the Language of Symmetry, Simon & Schuster, New York-London-Toronto-Sydney.zbMATHGoogle Scholar
  20. Mavroidis, C. and Roth, B., 1992, “Structural parameters which reduce the number of manipulator configurations”, Proc.  ASME 22nd Biennial Mechanisms Conference, September 13–16, Scottsdale, DE-45, pp. 359–366.Google Scholar
  21. Morgan, A.P., 1987, Solving Polynomial Systems Using Continuation for Scientific and Engineering Problems, Prentice-Hall, Englewood Cliffs. NJ.zbMATHGoogle Scholar
  22. Pieper, D.L., 1968, The Kinematics of Manipulators Under Computer Control, Ph.D. thesis, Stanford University, Stanford.Google Scholar
  23. Primrose, E.J.F., 1986, “On the input-output equation of the general 7R mechanism”, Mechanism and Machine Theory 21, no. 6, pp. 509–510.CrossRefGoogle Scholar
  24. Raghavan, M., 1993, “The Stewart platform of general geometry has 40 configurations”, ASME J. Mechanical Design 115, pp. 277–282.CrossRefGoogle Scholar
  25. Raghavan, M. and Roth, B., 1990, “Kinematic analysis of the 6R manipulator of general geometry”, in Miura, H. and Arimoto, S. (editors), Proc.  5th Int. Symposium on Robotics Research, MIT Press, Cambridge, MA.Google Scholar
  26. Raghavan, M. and Roth, B., 1993, “Inverse kinematics of the general 6R manipulator  and  related  linkages”, ASME J. Mechanical Design 115, pp. 502–508.CrossRefGoogle Scholar
  27. Salmon, G., Higher Algebra, 5th Edition (1885), reprinted: 1964, Chelsea Publishing Co., New York.Google Scholar
  28. Tsai, L.W. and Morgan, A.P., 1985, “Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods”, ASME J. Mechanisms, Transm., and Auto. in Design 107, pp. 189–200.Google Scholar
  29. Wälischmiller, W. and Li, H., 1996, “Development and application of the TELBOT System–A new Tele Robot System”, Proc.  11th CISM–IFToMM Symposium on Theory and Practice of Robots and Manipulators–Ro.Man.Sy. 11, Udine (Italy), July 1–4.Google Scholar
  30. Wells, D., 1986, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Middlesex, England.Google Scholar
  31. Williams, O., Angeles, J., and Bulca, F., 1993, “Design philosophy of an isotropic six-axis serial manipulator”, Robotics and Computer-Aided Manufacturing 10, no. 4, pp. 275–286.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jorge Angeles
    • 1
  1. 1.Department of Mechanical Engineering Centre for Intelligent Machines (CIM)McGill UniversityMontrealCanada

Personalised recommendations