Advertisement

An Overview of Robotic Mechanical Systems

  • Jorge Angeles
Chapter
Part of the Mechanical Engineering Series book series (MES, volume 124)

Abstract

In defining the scope of our subject, we have to establish the genealogy of robotic mechanical systems. These are, obviously, a subclass of the much broader class of mechanical systems. Mechanical systems, in turn, constitute a subset of the more general concept of dynamic systems. In the end, we must have an idea of what, in general, a system is.

Keywords

Mobile Robot Intelligent Machine Kinematic Chain Revolute Joint Robotic Manipulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

(AVI 37,221 kb)

(AVI 18,523 kb)

(AVI 496 kb)

(AVI 913 kb)

(AVI 545 kb)

(AVI 786 kb)

44106_4_En_1_MOESM7_ESM.pdf (100 kb)
(PDF 101 kb)

References

  1. Al-Widyan, K. and Angeles, J., 2004, “The robust design of Schönflies-motion generators,” in Lenarčič, J., and Galletti, C. (editors), On Advances in Robot Kinematics, Kluwer Academic Publishers, Dordrecht, pp. 339–350CrossRefGoogle Scholar
  2. Allen, P.K., Michelman, P., and Roberts, K.S., 1989, “An integrated system for dextrous manipulation”, Proc. IEEE Int. Conf. on Robotics & Automation, Scottsdale, pp. 612–617.Google Scholar
  3. Azimi, A., Holz, D., Kövecses, J., Angeles, J. and Teichmann, M., 2012, “Efficient dynamics modeling for rover simulation on soft terrain,” Proc. 50th AIAA Aerospace Sciences Meeting, 9–12 January, Nashville, TN. Paper No. 084, pp. 1–9.Google Scholar
  4. Borenstein, J., 1993, “Multi-layered control of a four-degree-of-freedom mobile robot with compliant linkage”, Proc. IEEE Int. Conf. on Robotics & Automation, Atlanta, pp. 7–12.Google Scholar
  5. Bottema, O. and Roth, B., 1979, Theoretical Kinematics, North-Holland Publishing, Co., Amsterdam (also available as a 1990 Dover Publications book).Google Scholar
  6. Clavel, R., 1988, “Delta, a fast robot with parallel geometry”, Proc.  18th Int. Symposium on Industrial Robots, Lausanne, pp. 91–100.Google Scholar
  7. Comerford, R., 1994, “Mecha…what?”, IEEE Spectrum, August, pp. 46–49.Google Scholar
  8. Company, O., Pierrot, F., Shibukawa, T., and Morita, K., 2001, “Four-degree-of-freedom parallel robot,” European Patent No. EP1084802, March 21.Google Scholar
  9. De Luca, A. and Oriolo, G., 1995, “Modelling and control of nonholonomic mechanical systems”, in Angeles, J. and Kecskeméthy, A. (editors), Kinematics and Dynamics of Multi-Body Systems, Springer-Verlag, New York, pp. 277–342.CrossRefGoogle Scholar
  10. Ekvall, S. and Krajić, D., 2005, “Grasp Recognition for Programming by Demonstration,” Proc. 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18–22, pp. 760–765.Google Scholar
  11. Gockel, T., Ahlmann, J., Dillmann, R., and Azad, P., 2005, “3D vision sensing for grasp planning: A new, robust and affordable structured light approach,” Proc. 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18–22, pp. 2540–2545.Google Scholar
  12. Gogu, G., 2004, “Fully Isotropic T3R1-type parallel manipulators,” in Lenarčič, J. and Galletti, C. (editors), On Advances in Robot Kinematics, Kluwer Academic Publishers, Dordrecht, pp. 265–272.CrossRefGoogle Scholar
  13. Graham, D., 1972, “A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus)”, J. Comp. Physiol. 81, pp. 23–25.CrossRefGoogle Scholar
  14. Hartenberg, R.S. and Denavit, J., 1964. Kinematic Synthesis of Linkages, McGraw-Hill Book Company, New York.zbMATHGoogle Scholar
  15. Hayward, V., 1994, “Design of hydraulic robot shoulder based on combinatorial mechanism,” in Yoshikawa, T., and Miyazaki, F. (eds.), Experimental Robotics 3, Lecture Notes in Control and Information Sciences 200, Springer-Verlag, New York, pp. 297–310. The Int. J. Robotics Res. 10, no. 5, pp. 767–790.Google Scholar
  16. Hervé, J.M., 1999, “The Lie group of rigid body displacements, a fundamental tool for mechanism design,” Mechanism and Machine Theory, Vol. 34, pp. 719–730.CrossRefzbMATHGoogle Scholar
  17. Hervé, J.M. and Sparacino, F., 1992, “Star, a new concept in robotics”, Proc.  3rd International Workshop on Advances in Robot Kinematics, September 7–9, Ferrara, pp. 176–183.Google Scholar
  18. Hirose, S., Masui, T., and Kikuchi, H., 1985, “Titan III: A quadruped walking vehicle”, in Hanafusa, H. and Inoue, X. (editors), Robotics Research 2, MIT Press, Cambridge, MA, pp. 325–331.Google Scholar
  19. Hines, L.L., Arabagi, V. and Sitti, M., 2011, “Free flight simulations and pitch and roll control experiments of a sub-gram flapping-flight micro aerial vehicle,” 2011 IEEE Int. Conf. Robotics and Automation, Shanghai, China, May 9–13, Paper No. 0602.Google Scholar
  20. Horn, B.K.P., 1986, Robot Vision, The MIT Press, Cambridge, MA.Google Scholar
  21. Hughes, P.C., Sincarsin, W.G., and Carroll, K.A., 1991, “Trussarm—a variable-geometry-truss manipulator”, J. of Intell. Mater. Syst. and Struct. 2, pp. 148–160.CrossRefGoogle Scholar
  22. Isidori, A., 1989, Nonlinear Control Systems, 2nd Edition, Springer-Verlag, Berlin.CrossRefzbMATHGoogle Scholar
  23. Jacobsen, S.C., Iversen, E.K., Knutti, D.F., and Biggers, K.B., 1984, “The Utah/MIT dextrous hand: Work in progress”, The Int. J. Robotics Res. 3, no. 4, pp. 21–50.CrossRefGoogle Scholar
  24. Jacobsen, S.C., Iversen, E.K., Knutti, D.F., Johnson, R.T., and Biggers, K.B., 1986, “Design of the Utah/MIT dextrous hand”, Proc. IEEE Int. Conf. on Robotics & Automation, San Francisco, pp. 1520–1532.Google Scholar
  25. Khalil, W. and Dombre, E., 2002, Modeling, Identification & Control of Robots, Hermes Penton Ltd., London.zbMATHGoogle Scholar
  26. Killough, S.M. and Pin, F.G., 1992, “Design of an omnidirectional and holonomic wheeled platform prototype”, Proc. IEEE Int. Conf. on Robotics & Automation,, Nice, pp. 84–90.Google Scholar
  27. Klein, C.A., Olson, K.W., and Pugh, D.R., 1983, “Use of force and attitude sensors for locomotion of a legged vehicle over irregular terrain”, The Int. J. Robotics Res. 2, no. 2, pp. 3–17.CrossRefGoogle Scholar
  28. Latombe, J.-C., 1991, Robot Motion Planning, Kluwer Academic Publishers, Dordrecht.CrossRefzbMATHGoogle Scholar
  29. Laliberté, T., Birglen, L. and Gosselin, C., 2002, “Underactuation in robotic grasping hands,” Japanese J. Machine Intelligence and Robotic Control, Special Issue on Underactuated Robots, Vol. 4, No. 3, pp. 77–87.Google Scholar
  30. Lee, C.C. and Lee, P.C., 2010, “Isoconstraned mechanisms for fast pick-and-place manipulation,” in Lou, Y. and Li, Z. (editors), Geometric Methods in Robotics and Mechanism Research, Lambert Academic Publishing, Saarbrücken, Germany, pp. 85–99.Google Scholar
  31. Lee, T., Leok, M. and McClamroch, N.H., 2010, “Geometric tracking control of a quadrotor UAV on SE(3),” Proc. 49th IEEE Conf. Decision and Control, Dec. 15–17, Atlanta, GA.Google Scholar
  32. Levine, M.D., 1985, Vision in Man and Machines, McGraw-Hill Book Company, New York.Google Scholar
  33. Liu, H., Iberall, T., and Bekey, G., 1989, “The multi-dimensional quality of task requirements for dextrous robot hand control”, Proc. IEEE Int. Conf. on Robotics & Automation, Scottsdale, pp. 452–457.Google Scholar
  34. Makino, H. and Furuya, N., 1980, “Selective compliance assembly robot arm,” Proc. First International Conference on Assembly Automation, Brighton (no page numbers available.)Google Scholar
  35. Merlet, J.-P., 2006, Parallel Robots, Second Edition, Springer, Dordrecht.zbMATHGoogle Scholar
  36. Ostrovskaya, S. and Angeles, J., 1998, “Nonholonomic systems revisited within the framework of analytical mechanics”, Applied Mechanics Reviews, vol. 51, No. 7, pp. 415–433.CrossRefGoogle Scholar
  37. Penrose, R., 1994, Shadows of the Mind. A Search for the Missing Science of Consciousness, Oxford University Press, Oxford.zbMATHGoogle Scholar
  38. Pettinato, J.S. and Stephanou, H.E., 1989, “Manipulability and stability of a tentacle based robot manipulator”, Proc. IEEE Int. Conf. on Robotics & Automation,, Scottsdale, pp. 458–463.Google Scholar
  39. Pfeiffer, F., Eltze, J., and Weidemann, H.-J., 1995, “The TUM walking machine”, Intelligent Automation and Soft Computing. An International Journal, 1, no. 3, pp. 307–323.Google Scholar
  40. Pierrot, F., Fournier, A., and Dauchez, P., 1991, “Towards a fully-parallel 6 dof robot for high-speed applications”, Proc. IEEE Int. Conf. on Robotics & Automation, Sacramento, pp. 1288–1293.Google Scholar
  41. Reynaerts, D., 1995, Control Methods and Actuation Technology for Whole-Hand Dextrous Manipulation, doctoral dissertation, Fakulteit der Torgepaste Wetenschappen, Katholieke Universiteit Leuven, Leuven.Google Scholar
  42. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., 1991, Object-Oriented Modeling and Design,  Prentice-Hall,  Englewood  Cliffs, NJ.zbMATHGoogle Scholar
  43. Rus, D., 1992, “Dextrous rotations of polyhedra”, Proc. IEEE Int. Conf. on Robotics & Automation,, Nice, pp. 2758–2763.Google Scholar
  44. Russell, Jr., M., 1983, “Odex I: The first functionoid”, Robotics Age, 5, pp. 12–18.Google Scholar
  45. Samson, C., Le Borgne, M., and Espiau, B., 1991, Robot Control. The Task Function Approach, Clarendon Press, Oxford.Google Scholar
  46. Salerno, A. and Angeles, J., 2004, “The control of semi-autonomous self-balancing two-wheeled quasiholonomic mobile robots,” Proc. 15th CISM-IFToMM Symposium on Robot Design, Dynamics and Control (RoManSy 2004), Montreal, Canada. June 14–18.Google Scholar
  47. Song, S.-M. and Waldron, K.J., 1989, Machines That Walk, The MIT Press, Cambridge, MA.Google Scholar
  48. Soureshi, R., Meckl, P.H., and Durfee, W.M., 1994, “Teaching MEs to use microprocessors”, Mechanical Engineering 116, no. 4, pp. 71–76.Google Scholar
  49. Spong, M.W., Hutchinson, S., and Vidyasagar, M., 2006, Robot Modeling and Control, John Wiley & Sons, Inc., Hoboken, NJ.Google Scholar
  50. Stroustrup, B., 1991, The C \(++\) Programming Language, Addison-Wesley Publishing Company, Reading, MA.zbMATHGoogle Scholar
  51. Sutherland, I.E. and Ullner, M.K., 1984, “Footprints in the asphalt”, The Int. J. Robotics Res. 3, no. 2, pp. 29–36.CrossRefGoogle Scholar
  52. Sun, L., Xie, H., Rong, W., and Chen, L., 2005, “Task-reconfigurable system for MEMS assembly,” Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18–22, pp. 844–849.Google Scholar
  53. Thorne, C.E. and Yim, M., 2011, “Towards the development of gyroscopically controlled micro air vehicles,” 2011 IEEE Int. Conf. Robotics and Automation, Shanghai, China, May 9–13, Paper No. 1800.Google Scholar
  54. Todd, D.J., 1985, Walking Machines. An Introduction to Legged Robots, Kogan Page Ltd., London.Google Scholar
  55. Vukobratovic, M. and Stepanenko, J., 1972, “On the stability of anthropomorphic systems”, Math. Biosci. 15, pp. 1–37.CrossRefzbMATHGoogle Scholar
  56. West, M. and Asada, H., 1995, “Design and control of ball wheel omnidirectional vehicles”, Proc. IEEE Int. Conf. on Robotics & Automation, Nagoya, pp. 1931–1938.Google Scholar
  57. Wen, L., Wang, T., Wu, G. and Li, J., 2011, “A novel method based on a force-feedback technique for the hydrodynamic investigation of kinematic effects on robotic fish,” 2011 IEEE Int. Conf. Robotics and Automation, Shanghai, China, May 9–13, Paper No. 0828.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jorge Angeles
    • 1
  1. 1.Department of Mechanical Engineering Centre for Intelligent Machines (CIM)McGill UniversityMontrealCanada

Personalised recommendations