Strategy-Based Dynamic Real-Time Route Prediction

  • Makoto Takemiya
  • Toru Ishikawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8116)


People often experience difficulty traversing novel environments. Predicting where wayfinders will go is desirable for navigational aids to prevent mistakes and influence inefficient traversals. Wayfinders are thought to use criteria, such as minimizing distance, that comprise wayfinding strategies for choosing routes through environments. In this contribution, we computationally generated routes for five different wayfinding strategies and used the routes to predict subsequent decision points that wayfinders in an empirical study traversed. It was found that no single strategy was consistently more accurate than all the others across the two environments in our study. We next performed real-time classification to infer the most probable strategy to be in use by a wayfinder, and used the classified strategy to predict subsequent decision points. The results demonstrate the efficacy of using multiple wayfinding strategies to dynamically predict subsequently traversed decision points, which has implications for navigational aids, among other real-world applications.


navigation route prediction individual differences spatial cognition spatial abilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailenson, J.N., Shum, M.S., Uttal, D.H.: The Initial Segment Strategy: a Heuristic for Route Selection. Memory & Cognition 28(2), 306–318 (2000)CrossRefGoogle Scholar
  2. 2.
    Bojduj, B., Weber, B., Richter, K.-F., Bertel, S.: Computer Aided Architectural Design: Wayfinding Complexity Analysis. In: 12th International Conference on Computer Supported Cooperative Work in Design, CSCWD, pp. 919–924. IEEE (2008)Google Scholar
  3. 3.
    Bonacich, P.: Factoring and Weighting Approaches to Status Scores and Clique Identification. Journal of Mathematical Sociology 2(1), 113–120 (1972)CrossRefGoogle Scholar
  4. 4.
    Brunyé, T.T., Mahoney, C.R., Gardony, A.L., Taylor, H.A.: North is Up (Hill): Route Planning Heuristics in Real-World Environments. Memory & Cognition 38(6)Google Scholar
  5. 5.
    Brunyé, T.T., Gagnon, S., Waller, D., Hodgson, E., Tower-Richardi, S., Taylor, H.A.: Up North and Down South: Implicit Associations Between Topography and Cardinal Direction. The Quarterly Journal of Experimental Psychology 65(10), 1880–1894 (2012)CrossRefGoogle Scholar
  6. 6.
    Dalton, R.C.: The Secret is to Follow Your Nose. Environment and Behavior 35(1), 107 (2003)CrossRefGoogle Scholar
  7. 7.
    Dave, K., Lawrence, S., Pennock, D.M.: Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews. In: Proceedings of the 12th International Conference on World Wide Web, pp. 519–528. ACM (2003)Google Scholar
  8. 8.
    Dee, H.M., Hogg, D.C.: Navigational Strategies in Behaviour Modelling. Artificial Intelligence 173(2), 329–342 (2009)CrossRefGoogle Scholar
  9. 9.
    Duckham, M., Kulik, L.: “Simplest” Paths: Automated Route Selection for Navigation. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 169–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Frankenstein, J., Büchner, S.J., Tenbrink, T., Hölscher, C.: Influence of Geometry and Objects on Local Route Choices during Wayfinding. In: Hölscher, C., Shipley, T.F., Olivetti Belardinelli, M., Bateman, J.A., Newcombe, N.S. (eds.) Spatial Cognition VII. LNCS, vol. 6222, pp. 41–53. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Garcia, A., Finomore, V., Burnett, G., Baldwin, C., Brill, C.: Individual Differences in Multimodal Waypoint Navigation. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 56, pp. 1539–1543. SAGE Publications (2012)Google Scholar
  12. 12.
    Gardony, A.L., Brunyé, T.T., Mahoney, C.R., Taylor, H.A.: How Navigational Aids Impair Spatial Memory: Evidence for Divided Attention. Spatial Cognition & Computation (to appear, 2013)Google Scholar
  13. 13.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely Randomized Trees. Machine Learning 63(1), 3–42 (2006)MATHCrossRefGoogle Scholar
  14. 14.
    Golledge, R.: Path Selection and Route Preference in Human Navigation: A Progress Report. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 207–222. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring Network Structure, Dynamics, and Function Using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008), pp. 11–15 (August 2008)Google Scholar
  16. 16.
    Hegarty, M., Montello, D.R., Richardson, A.E., Ishikawa, T., Lovelace, K.: Spatial Abilities at Different Scales: Individual Differences in Aptitude-Test Performance and Spatial-Layout Learning. Intelligence 34(2), 151–176 (2006)CrossRefGoogle Scholar
  17. 17.
    Hegarty, M., Richardson, A., Montello, D., Lovelace, K., Subbiah, I.: Development of a Self-Report Measure of Environmental Spatial Ability. Intelligence 30(5), 425–447 (2002)CrossRefGoogle Scholar
  18. 18.
    Hochmair, H., Frank, A.U.: Influence of Estimation Errors on Wayfinding-Decisions in Unknown Street Networks–Analyzing the Least-Angle Strategy. Spatial Cognition and Computation 2(4), 283–313 (2000)CrossRefGoogle Scholar
  19. 19.
    Hochmair, H., Karlsson, V.: Investigation of Preference Between the Least-Angle Strategy and the Initial Segment Strategy for Route Selection in Unknown Environments. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 79–97. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Hölscher, C., Tenbrink, T., Wiener, J.M.: Would You Follow Your Own Route Description? Cognitive Strategies in Urban Route Planning. Cognition 121(2), 228–247 (2011)CrossRefGoogle Scholar
  21. 21.
    Ishikawa, T., Fujiwara, H., Imai, O., Okabe, A.: Wayfinding with a GPS-Based Mobile Navigation System: a Comparison with Maps and Direct Experience. Journal of Environmental Psychology 28(1), 74–82 (2008)CrossRefGoogle Scholar
  22. 22.
    Ishikawa, T., Montello, D.R.: Spatial Knowledge Acquisition from Direct Experience in the Environment: Individual Differences in the Development of Metric Knowledge and the Integration of Separately Learned Places. Cognitive Psychology 52(2), 93–129 (2006)CrossRefGoogle Scholar
  23. 23.
    Jagadeesh, G.R., Srikanthan, T., Quek, K.H.: Heuristic Techniques for Accelerating Hierarchical Routing on Road Networks. IEEE Transactions on Intelligent Transportation Systems 3(4), 301–309 (2002)CrossRefGoogle Scholar
  24. 24.
    Kato, Y., Takeuchi, Y.: Individual Differences in Wayfinding Strategies. Journal of Environmental Psychology 23(2), 171–188 (2003)CrossRefGoogle Scholar
  25. 25.
    Krumm, J.: A Markov Model for Driver Turn Prediction. In: Society of Automotive Engineers (SAE) 2008 World Congress. ACM (2008)Google Scholar
  26. 26.
    Krumm, J.: Where Will They Turn: Predicting Turn Proportions at Intersections. Personal and Ubiquitous Computing 14(7), 591–599 (2010)CrossRefGoogle Scholar
  27. 27.
    Krumm, J., Horvitz, E.: Predestination: Inferring Destinations from Partial Trajectories. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 243–260. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Laasonen, K.: Clustering and Prediction of Mobile User Routes from Cellular Data. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 569–576. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Liben, L., Downs, R.: Understanding Person-Space-Map Relations: Cartographic and Developmental Perspectives. Developmental Psychology 29(4), 739–752 (1993)CrossRefGoogle Scholar
  30. 30.
    Liu, B.: Web Data Mining. Springer, Berlin (2007)Google Scholar
  31. 31.
    Montello, D.: Navigation. The Cambridge Handbook of Visuospatial Thinking 18, 257–294 (2005)CrossRefGoogle Scholar
  32. 32.
    Murakoshi, S., Kawai, M.: Use of Knowledge and Heuristics for Wayfinding in an Artificial Environment. Environment and Behavior 32(6), 756–774 (2000)CrossRefGoogle Scholar
  33. 33.
    Parush, A., Ahuvia, S., Erev, I.: Degradation in Spatial Knowledge Acquisition When Using Automatic Navigation Systems. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 238–254. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)Google Scholar
  35. 35.
    Richter, K.-F., Weber, B., Bojduj, B., Bertel, S.: Supporting the Designer’s and the User’s Perspectives in Computer-Aided Architectural Design. Advanced Engineering Informatics 24(2), 180–187 (2010)CrossRefGoogle Scholar
  36. 36.
    Simmons, R., Browning, B., Zhang, Y., Sadekar, V.: Learning to Predict Driver Route and Destination Intent. In: Intelligent Transportation Systems Conference, ITSC 2006, pp. 127–132. IEEE (2006)Google Scholar
  37. 37.
    Takemiya, M., Ishikawa, T.: Determining Decision-Point Salience for Real-Time Wayfinding Support. Journal of Spatial Information Science (4), 57–83 (2012)Google Scholar
  38. 38.
    Takemiya, M., Ishikawa, T.: I Can Tell by the Way You Use Your Walk: Real-Time Classification of Wayfinding Performance. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 90–109. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  39. 39.
    Takemiya, M., Richter, K.-F., Ishikawa, T.: Linking Cognitive and Computational Saliences in Route Information. In: Stachniss, C., Schill, K., Uttal, D. (eds.) Spatial Cognition 2012. LNCS, vol. 7463, pp. 386–404. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Makoto Takemiya
    • 1
  • Toru Ishikawa
    • 2
  1. 1.Graduate School of Interdisciplinary Information StudiesThe University of TokyoJapan
  2. 2.Center for Spatial Information ScienceThe University of TokyoJapan

Personalised recommendations