Using Maptrees to Characterize Topological Change

  • Michael Worboys
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8116)


This paper further develops the theory of maptrees, introduced in [13]. There exist well-known methods, based upon combinatorial maps, for topologically complete representations of embeddings of connected graphs in closed surfaces. Maptrees extend these methods to provide topologically complete representations of embeddings of possibly disconnected graphs. The focus of this paper is the use of maptrees to admit fine-grained representations of topological change. The ability of maptrees to represent complex spatial processes is demonstrated through case studies involving conceptual neighborhoods and cellular processes.


maptree topology topological change spatial information theory conceptual neighborhood cellular process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P systems. Natural Computing (2010)Google Scholar
  2. 2.
    Buneman, O.P.: A grammar for the topological analysis of plane figures. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 383–393. Elselvier (1970)Google Scholar
  3. 3.
    Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Edmonds, J.R.: A combinatorial representation for polyhedral surfaces. Notices Amer. Math. Soc. 7, 646 (1960)Google Scholar
  5. 5.
    Egenhofer, M.J., Franzosa, R.D.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  6. 6.
    Egenhofer, M.J., Mark, D.M.: Modeling conceptual neighborhoods of topological line-region relations. International Journal of Geographical Information Systems 9(5), 555–565 (1995)CrossRefGoogle Scholar
  7. 7.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54, 199–227 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Jiang, J., Nittel, M., Worboys, S.: Qualitative change detection using sensor networks based on connectivity information. GeoInformatica 15(2), 305–328 (2011)CrossRefGoogle Scholar
  9. 9.
    Jiang, J., Worboys, M.: Event-based topology for dynamic planar areal objects. International Journal of Geographical Information Science 23(1), 33–60 (2009)CrossRefGoogle Scholar
  10. 10.
    Randell, D.A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) KR 1992. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, pp. 165–176. Morgan Kaufmann, San Mateo (1992)Google Scholar
  11. 11.
    Stell, J., Worboys, M.: Relations between adjacency trees. Theoretical Computer Science 412, 4452–4468 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Tutte, W.T.: What is a map? In: New Directions in the Theory of Graphs, pp. 309–325. Academic Press, New York (1973)Google Scholar
  13. 13.
    Worboys, M.: The maptree: A fine-grained formal representation of space. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 298–310. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Michael Worboys
    • 1
  1. 1.School of Computing and Mathematical SciencesUniversity of GreenwichLondonEngland

Personalised recommendations